Кто создал компьютер и в каком году. Персональный компьютер это

Зачастую мы рассказываем о новых технологиях, о том, чего нам следует ждать, но в этой статье речь пойдет о самом первом компьютере в мире. Каким он был, что умел и многое другое вы сможете прочитать в этой статье.

Первый в мире компьютер

Самый первый компьютер в мире появился в 1946 году. Он появился в результате работы американских ученных с 1943 по 1945 годы. Пока Европу охватила Вторая мировая война в США полным ходом шло тестирование и разработка компьютера, который по расчетам специалистов должен был служить в целях армии для подсчета баллистических таблиц артиллерии, а также авиации.

Вскоре компьютер использовали в научных целях, позже опять в целях армии.

В самом начале, компьютер имел немного другое определение нежели сегодня. Этот компьютер называли Electronic Numerical Integrator And Computer сокращено (ENIAC). Это можно перевести так: электронный цифровой интегратор и компьютер. Размеры этого, на наши дни глупого, аппарата просто удивляют. Если бы кому-нибудь захотелось приобрести его, то вместе с ним владельцу бы пришлось покупать и целый цех, ведь размеры первого в мире компьютера были огромными, а именно ему надо было 85 квадратных метров площади, весил он 28 тонн, в длину первый компьютер был около 30 метров и потреблял 150 кВт энергии.

Чтобы охладить этот компьютер использовались немного переделанные авиационные двигатели от компании Chrysler.

ENIAC или первый компьютер был придуман благодаря Джон Макли и Дж. Преспер Эккерт. Каждый из них занимался своим делом, но в итоге они создали к ENIAC.

Кстати, компьютер был создан на территории университета, который находится в штате Пенсильвания в Филадельфии.

Здесь стоит сказать, что попытки создать нечто подобное были уже и раньше. Так, можно сказать о Марк 1, который был создан еще в 1941 году. Хотя компьютер 1941 года можно расценивать как первый компьютер в мире, принято считать все же первым компьютером именно этот, который был создан в 1946 году. Почему? Да потому, что компьютер 1946 года имел 18 000 электронных ламп, что делает его непосредственным предком сегодняшнего компьютера. Марк 1 из 41-го, просто нельзя назвать электронным.




Такой компьютер был чуть мощнее обычного калькулятора. Чтобы ввести в него значение необходимо было заправить его специальной бумагой, на которой уже было специально создано это значение.

Марк 1 из 1941 года

Если уже говорить о первом компьютере, то нельзя не рассказать об Марке 1. На создание этого компьютера было потрачено 500 тысяч долларов. Для создания компьютера были приглашены специалисты из IBM.

Несмотря на то, что создан компьютер был уже в 1941 году, его официальное открытие и успешное создание принято считать на 7 августа 1944 года. Тогда, как раз к этой дате, компьютер прошел все тесты и был признан работоспособным.

Если говорить о размерах, то он даже немного поменьше предыдущего компьютера. Марк 1 имеет 2,5 метра в высоту, длину около 17 метров, а также вес, который равен 4,5 тонны.



В компьютере находится примерно 765 тысяч штук различных деталей. Также, если сложить все провода в одну линию, то получится около 800 км!

Компьютер не мог похвастаться крутыми функциями. Он умел складывать числа. На это уходило от 2 до 3 секунд размышлений. Кроме того, первый компьютер умел делить числа, на это уходило 6 секунд. Также он умел умножать, занимало 15 секунд.


Вычислительные машины, предназначенные для персонального использования, носили официальное название «персональные электронные вычислительные машины» (ПЭВМ). В терминологии, принятой в российских стандартах , это словосочетание и сегодня указывается вместо используемого де-факто названия «персональный компьютер».

История

Централизованные вычисления

До появления первых персональных компьютеров приобретение и эксплуатация компьютеров были очень дорогостоящими, что исключало владение ими частными лицами. Компьютеры можно было найти в больших корпорациях, университетах , исследовательских центрах, государственных (в том числе военных) учреждениях.

Конструкторы и самодельные компьютеры

Создание персональных компьютеров стало возможным в 1970-х годах , когда любители стали собирать свои собственные компьютеры иногда лишь для того, чтобы в принципе иметь возможность похвастаться таким необычным предметом. Ранние персональные компьютеры почти не имели практического применения и распространялись очень медленно.

Родившись в качестве жаргонизма, синонима названия микрокомпьютер , наименование персональный компьютер постепенно меняло своё значение. Так, первое поколение персональных компьютеров можно было приобрести только в виде комплекта деталей, а иногда даже просто обыкновенной инструкции для сборки. Сама сборка, программирование и наладка системы требовали определённого опыта, навыка работы с машинными кодами или языком ассемблера . Чуть позднее, когда подобные устройства стали привычны и начали продаваться готовыми, вместе с некоторым набором адаптированных программ, в обиход вошло название домашний компьютер .

Amiga и Macintosh

Windows 95, мультимедийные возможности ПК

В 1995 году произошло два ключевых события в истории ПК: банкротство корпорации Commodore и появление Microsoft Windows 95 , приблизившей IBM PC-совместимые компьютеры к тем возможностям, которые существовали на Commodore Amiga и Apple Macintosh . Сегодня возможности мультимедиа доступны в каждом доме и на любой аппаратной платформе.

Один компьютер - один хозяин

Как правило, единичный персональный компьютер в течение единичного сеанса работы на нём используется только одним пользователем (то есть, например, несколько пользователей (например, в семье) могут пользоваться одним ПК только по очереди, то есть в режиме только разделения компьютерного времени). В соответствии со своим назначением, он обеспечивает работу наиболее часто используемых приложений , таких как текстовые процессоры , веб-браузеры , почтовые программы , мессенджеры , мультимедийные программы , компьютерные игры , графические программы , среды разработки программного обеспечения и т. п. Для упрощения взаимодействия с людьми подобные программы оснащаются удобным графическим интерфейсом .

Продажи во всём мире

По данным аналитической компании IDC , в 2005 году мировые поставки персональных компьютеров составили 202,7 млн штук (рост на 15,8 % по сравнению с 2004 годом).

Отечественные персональные компьютеры

В качестве дисплея использовался телевизор, воспринимавший низкочастотный видеосигнал, или монитор, а устройством внешней памяти служил бытовой кассетный магнитофон. На экран информация выводилась в двух режимах: в чёрно-белом, 64 символа в строке, и в цветном (4 цвета), 32 символа в строке; всего информационных строк было 25. Максимальная разрешающая способность компьютера составляла 512х256 точек. Звук подавался на встроенный спикер тем же способом, как и данные - на магнитофон.

Ключевые изменения в архитектуре распространённых персональных компьютеров

  • Внедрение жёсткого диска
  • Появление графического режима
  • Переход с 5,25-дюймовых дискет на 3,5-дюймовые
  • Появление BIOS SETUP
  • Появление стандарта ATA
  • Появление extended memory (более 1 Мб).
  • Появление звуковых карт
  • Переход с 16-битных на 32-битные процессоры .
  • Переход с дискет на USB-носители
  • Появление , DVD и BD-ROM -приводов.
  • Появление USB
  • Появление перезаписываемой BIOS
  • Замена шины ISA на шину PCI .
  • Появление графических ускорителей
  • Внедрение шины AGP .
  • Появление стандарта ATX .
  • Переход с интерфейса ATA на SATA .
  • Переход с шины AGP (и PCI) на PCI Express .
  • Внедрение многоядерных процессоров.
  • Переход с 32-битных на 64-битные процессоры.
  • Появление UEFI и Secure Boot
  • Внедрение сенсорных дисплеев

Стационарные ПК

Первые персональные компьютеры (как и любые первые компьютеры вообще) не предназначались для переноски. То есть первые ПК были стационарными. Они состояли из отдельных конструктивно завершенных частей, как например системного блока, монитора и клавиатуры, соединенных интерфейсными кабелями с системным блоком. Это пример раздельной схемы построения ПК. Но в настоящее время также широкое распространение получили ПК-моноблоки , в которых системный блок, монитор и, нередко, другие устройства (клавиатура, звуковая подсистема, веб-камера , микрофон) конструктивно объединены в одно устройство.

Раздельная схема

Раздельная схема - в противоположность моноблочной - предполагает, что ПК состоит из системного блока и разнообразных внешних, то есть конструктивно самостоятельных подключаемых к системному блоку извне через стандартные интерфейсы (например: USB, D-Sub, DVI, FireWire), устройств (в частности: мониторы, клавиатура, мышь, микрофоны, звуковые колонки, веб-камеры, принтеры, сканеры, различные внешние модемы, игровые устройства).

Исторически такая схема ПК было самой первой. Она же до сих пор остается самой распространенной схемой стационарных ПК. Например, профессиональные рабочие станции практически всегда строятся по такой схеме.

Главное достоинство раздельной схемы - сравнительно легкая масштабируемость. То есть в любой момент можно без особых затруднений заменить любой из компонентов ПК (например, монитор). Но обратная сторона медали - наименьшая транспортабельность и сравнительная громоздкость такого ПК. Естественно раздельная схема применяется тогда когда главное требование к ПК - легкость и простота масштабирования.

Функциональным ядром в раздельной схеме стационарного ПК естественно является системный блок.

Известны два вида конструктивной компоновки системного блока:

  • desktop - горизонтальная конструктивная компоновка системного блока, с возможностью размещения монитора на таком системном блоке;
  • tower - «башенный» системные блок в вертикальной конструктивной компоновке.

Десктоп

Десктоп («настольный компьютер» в буквальном смысле слова) - стационарный компьютер, имеющий такой форм-фактор, что его удобнее располагать на столе (отсюда и применение термина «десктоп», от англ. desktop - «рабочая поверхность (письменного стола)») дома или в офисе. Раньше системные блоки такого типа обычно были широкими и места на них было достаточно для размещения на нём ЭЛТ-монитора. Это в свою очередь позволяло экономить место на рабочем столе, на который устанавливался десктоп. Естественно, это было учтено конструкторами корпусов, создававшими корпуса для таких системных блоков, способные выдерживать вес ЭЛТ-монитора. Но в результате десктоп получался по цене дороже «башенного» системного блока.

Десктопы применяются до сих пор, и до сих пор монитор ставят на десктоп. Однако из за уменьшения габаритов и веса комплектующих и ещё более резкого уменьшения веса и глубины мониторов (современные «доскообразные» мониторы - сплошь ЖК-мониторов - сравнительно малы по весу и глубине), стало возможным создавать и использовать сравнительно компактные и дешевые десктопы. В результате современный десктоп способен конкурировать с «башенным» системным блоком не только по эргономике но и по цене. А следовательно по соотношению цена/эргономика десктоп в настоящее время может быть ещё более выгодным, чем в «эпоху ЭЛТ-мониторов», приобретением. В частности многими фирмами выпускаются тонкие десктопы - слим-десктопы (slim-desktop). Естественно, тонкий десктоп эргономичнее чем классический «толстый» десктоп, так почти не влияет на высоту установки размещаемого на нём монитора.

Tower

«Башенный» системный блок - системный блок типа Tower («башня») - высокий и потому обычно располагается под столом (часто в специально предназначенных для это нишах или отделениях компьютерных столов). Из-за уменьшения размеров и массы комплектующих также стало возможно уменьшение и размеров самих «башенных» системных блоков. В результате, сначала появились системные блоки mini tower, а потом и slim tower. Мini tower потом вышли из эксплуатации, уступив место системным блока middle tower, являющихся в настоящее время самой многочисленной подгруппой «башенных» системных блоков. А slim tower доминируют в категории компактных «башенных» системных блоков.

Моноблок

Конструктивная схема стационарного ПК, в которой системный блок, монитор и, в настоящее время, микрофон, звуковая колонки, веб-камера конструктивно объединены в одно устройство - моноблок . Такой ПК эргономичнее (занимает минимум пространства) и более привлекателен с эстетической точки зрения. Также, такой ПК более транспортабелен, чем стационарные ПК, построенные по раздельной схеме. С другой стороны, такой ПК сложнее масштабировать и, в том числе, затруднена самостоятельная техническая модернизация и обслуживание. Например, если у моноблока сломается микрофон, то заменить его на исправный нередко возможно только в сервис-центре.

Мобильные (носимые) ПК

Ноутбуки

Компактные компьютеры, содержащие все необходимые компоненты (в том числе монитор) в одном небольшом корпусе, как правило, складывающемся в виде книжки (отсюда и название данного вида ПК). Приспособлены для работы в дороге, на небольшом свободном пространстве. Для достижения малых размеров в них применяются специальные технологии: специально разработанные специализированные микросхемы (ASIC), ОЗУ и жёсткие диски уменьшенных габаритов, компактная клавиатура, не содержащая цифрового поля, внешние блоки питания, минимум интерфейсных гнезд для подключения внешних устройств.

Как правило, содержат развитые средства подключения к проводным и беспроводным сетям, встроенное мультимедийное оборудование (динамики, часто, также, микрофон и веб-камеру). В последнее время вычислительная мощность и функциональность ноутбуков не сильно уступают стационарным ПК, а иногда и превосходит их. Очень компактные модели не оснащаются встроенным CD/DVD-дисководом.

Подключая к ноутбуку внешние клавиатуру, мышь, монитор, звуковые колонки, модемы, игровые устройства и иные внешние устройства ноутбук можно превратить в настольный ПК. Это можно делать вставляя ноутбук в специальный док, как это делалось раньше или напрямую (современные ноутбуки, особенно предназначенные для замены стационарных ПК в качестве рабочих станций, дают такую возможность).

Планшетные ПК

Планшетный ноутбук Toshiba 3500

Аналогичны ноутбукам, но содержат сенсорный, то есть чувствительный к нажатию, экран и не содержат механической клавиатуры. Ввод текста и управление осуществляются через экранный интерфейс, часто доработанный специально для удобного управления пальцами. Некоторые модели могут распознавать рукописный текст, написанный на экране.

Чаще всего корпус не раскрывается, как у ноутбуков, а экран расположен на внешней стороне верхней поверхности. Бывают и комбинированные модели, у которых корпус может тем или иным образом раскрываться (например, как слайдер), предоставляя доступ к расположенной внутри клавиатуре.

По вычислительной мощи планшетные ПК уступают стационарным и ноутбукам, так как для длительной работы без внешнего источника питания приходится использовать энергосберегающие комплектующие, жертвуя их быстродействием.

Карманные ПК (PDA)


КПК Acer N10

Сверхпортативные ПК, умещающиеся в кармане. Управление ими, как правило, происходит с помощью небольшого по размерам и разрешению экрана, чувствительного к нажатию пальца или специальной палочки-указки - стилуса, а клавиатура и мышь отсутствуют. Однако некоторые модели [уточнить ] содержат миниатюрную фиксированную или выдвигающуюся из корпуса клавиатуру.

Разрешение экрана стремится приблизиться к мониторам обычных компьютеров, в среднем около 800×480 в современных моделях.

В таких устройствах используются сверхэкономичные процессоры и флеш-накопители небольшого объёма, поэтому их вычислительная мощь несопоставима с другими ПК (особенно стационарными). Тем не менее, они содержат все признаки персонального компьютера: процессор, накопитель, оперативную память, монитор, операционную систему, прикладное ПО и даже игры и ориентированность на индивидуальное использование.

Всё более популярными становятся КПК с функциями мобильного телефона (коммуникаторы ). Встроенный коммуникационный модуль позволяет не только совершать звонки, но и подключаться к Интернету в любой точке, где есть сотовая связь совместимого стандарта (GSM /GPRS / , CDMA).

Нестандартные конструкции ПК

Barebone


Компьютер формата barebone

Barebone - компьютеры, строящиеся пользователем для выполнения определенных задач (обычно в качестве мультимедийной станции). В продажу поступают в виде так называемых «скелетных» баз в составе корпуса, материнской платы и системы охлаждения. Материнская плата, как правило, оснащена встроенными звуковым и видеоконтроллерами. Выбор конфигурации и соответственно комплектующих в виде дисковых накопителей, памяти и периферии, а также других устройств (ТВ-тюнера, дополнительной видеокарты и т. п.) остаются на усмотрение пользователя. Как правило, «баребоны» имеют меньшую высоту корпуса и, как следствие, уменьшенный внутренний объём, а также усовершенствованную систему охлаждения, отличающуюся низкой шумностью.

Защищённые ПК

Ряд компаний производит компьютеры, обладающие устойчивостью к агрессивным средам: сильной вибрации, ударам, большой запыленности, влажности, вандализму - условиям, в которых обычные ПК быстро бы вышли из строя. Как правило, устойчивые ПК выпускаются в формате ноутбуков , более тяжёлых и больших по размерам, чем обычные. Их стоимость также значительно выше. Одна из сфер применения таких ПК - военное дело (например, эксплуатация в полевых штабах).

Промышленные ПК

Предназначены для решения задач промышленной автоматизации. Отличаются стойкостью к различным внешним воздействиям, увеличенным жизненным циклом изделия, возможностью подключения к промышленным сетям (PROFINET , Profibus).

Тихий ПК

Бесшумный компьютер Zonbu

Для использования в жилых комнатах используются конструкции ПК, производящие минимум шума или работающие совершенно бесшумно. Такие модели можно оставлять включенными постоянно, что даёт ряд преимуществ: отсутствует период загрузки, компьютер всегда готов к работе и может постоянно отслеживать новую почту или мгновенные сообщения для пользователя. В целом, постоянно включенный ПК может выполнять ряд особенных задач:

  • быть мультимедийной станцией (воспроизводить видео-, аудиозаписи, интернет-радио);
  • работать как видеомагнитофон: записывать передачи телевидения или радио для последующего просмотра или прослушивания в удобное время;
  • служить P2P -клиентом (обмениваться файлами в автоматическом режиме с другими компьютерами)
  • служить домашним или даже интернет-сервером ;
  • следить за температурой или присутствием с помощью соответствующих датчиков или фото-, видеокамеры (веб-камеры).

Чтобы сделать ПК тихим, используется несколько технологий:

  • безвентиляторные типы охлаждения:
    • жидкостное (с передачей жидкости на большой пассивно-охлаждаемый радиатор)
    • применение термотруб (передача всей энергии путем термотруб на поверхность корпуса, также состоящего из меди или алюминия)
    • применение очень крупных радиаторов (часто с термотрубами)
    • погружение всей электроники в резервуар с некондуктивным маслом
    • фреоновое (применяется микрохолодильник с соответствующей электроникой и изоляцией. Не всегда «тихий». К примеру Vapo-chill)
    • жидкий азот (только кратковременное, не предназначено для сколь-либо долгой эксплуатации, как правило для разгона - хотя бесшумно)
  • малошумные вентиляторы с лопастями специальной формы;
  • процессоры , не требующие активного охлаждения (ввиду их маломощности, это не всегда приемлемое решение);
  • малошумные жёсткие диски , а также установка их на шумопоглощающие крепления;
  • замена жёстких дисков на флеш-память или удалённые дисковые массивы;
  • установка бесшумного (noiseless) блока питания.

Большинство современных персональных компьютеров способны снижать потребляемую мощность и уровень шума в моменты низкой нагрузки, но для постоянной тихой работы не обойтись без применения специальных технологий, указанных выше.

Компактные ПК

Некоторые компании предлагают ПК значительно меньших размеров, чем стандартные. Такие модели занимают меньше места в рабочей или домашней обстановке, легче вписываются в интерьер, зачастую красивее и тише обычных ПК. Собрать компактную модель по силам большинству пользователей, если подобрать специальные модели корпуса и материнской платы.

Одними из первых компактных компьютеров были модели Macintosh в 1984 году , которые представляли собой моноблок : системные компоненты в одном корпусе с монитором . Значительно позже идея была продолжена в моделях eMac и iMac . Аналогичные по формату компьютеры пытались выпускать и другие компании (например, eMachines), но без особого успеха.

Параллельно технологии миниатюризации отрабатывались на тонких клиентах , которые обычно невелики по размерам и весу, но полноценными ПК не являлись. (Тонкий клиент - это на самом деле «умный» терминал, позволяющий, например, превратить ПК в многопользовательский компьютер).

Долгое время [когда? ] вершиной миниатюризации считался [кем? ] компьютер Mac mini . Этот чрезвычайно компактный компьютер (по размерам как небольшая, но толстая книга) обладает тем не менее адекватной вычислительной мощностью (процессор Intel Core Duo) и работает бесшумно. Однако в настоящее время, с появлением плат форм-фактора pico-ITX , появились модели, соперничающие по размерам с Mac mini.

Существует несколько конкурирующих между собой проектов компактных и дешёвых в производстве персональных компьютеров, некоторые из которых предназначены для развивающихся стран: OLPC , VIA pc-1 Initiative, Classmate PC , Asus Eee PC и др. Однако удешевление и миниатюризация достигнуты ценой заметного отставания по вычислительной мощности от полноразмерных ПК.

Технологии, уменьшающие габариты ПК:

  • материнская плата уменьшенного формата (mini-ITX и др.);
  • малогабаритный корпус;
  • встроенные CD/DVD-дисководы со щелевой загрузкой или отсутствие таких дисководов;
  • меньшее количество отсеков для жёстких дисков и DVD/CD-дисководов, зачастую всего один;
  • меньше гнёзд USB, аудио и т. д.;
  • внешние блоки питания и устройства (например, CD/DVD-дисководы) вместо встроенных.

Хакинтош

Хакинтош (англ. hackintosh , от слов хакер или хак и макинтош ) - ПК, собранный любителем и способный работать под управлением Mac OS X , во взломанном для запуска на «неяблочном» компьютере варианте называемой OSx86 , то есть более дешёвый аналог компьютера от Apple . Так как современные макинтоши рассчитаны на процессоры Intel и другие стандартные компоненты, возникает теоретическая возможность запускать Mac OS X на любых ПК на базе этих процессоров. В реальности поддерживается только узкий набор аппаратных конфигураций, которые встречается в настоящих макинтошах, поэтому «хакинтош» должен повторять одну из этих конфигураций. С другой стороны Mac OS X создана для макинтоша и только, и корректно и максимально производительно будет работать только на макинтоше. Кроме того, в легально поставляемой Mac OS X присутствуют ограничения, не позволяющие ей работать на чужой аппаратуре, так что в «хакинтоше» применяют старую служебную версию без этих ограничений, либо взломанную более свежую версию, либо специальные аппаратные средства, имитирующие сигнатуры макинтоша, проверяемые системой. Установка системы Mac OS X на компьютеры, не произведённые Apple, является также нарушением лицензии на эту ОС.

Персональный сервер

Любой сервер, используемый неким человеком в качестве личного сервера и по этому признаку относимый к ПК. Но конструктивно такой сервер, как любой сервер, может быть каким угодно. В частности такой сервер может быть и стоечным.

Персональная рабочая станция

Конструктивно любой компьютер, используемый в качестве персональной, то есть однопользовательской, рабочей станции и который, зачастую, ПК можно признать лишь по этому признаку. То есть конструктивно это может быть даже суперкомпьютер, но он может считаться ПК, если используется в качестве персональной рабочей станции.

Персональный суперкомпьютер

Естественно это такой же суперкомпьютер, только являющийся личным суперкомпьютером некоего человека. И хотя случаев владения персональными, то есть личными, суперкомпьютерами ещё не было, но в принципе возможно и такое. Ведь многие люди владеют, например, личными самолётами.

Проблемы терминологии

В конце 1970-х, после начала массового производства микросхем всё большей степени интеграции, стоимость компьютеров резко упала. Это привело к созданию вместо многопользовательских мейнфреймов компьютеров, которые эксплуатировались одним человеком. Такие компьютеры стали называть «персональными компьютерами».

Персональные компьютеры всё же имели довольно большую стоимость (несколько тысяч долларов) и в домашних условиях практически не применялись.

В начале 1980-х годов годов фирмы стали производить облегчённые варианты персональных компьютеров, обычно размещаемых в клавиатурах. Эти компьютеры имели небольшую стоимость, были доступны для семей со средним достатком и ориентированы на домашнее (в том числе игровое) использование. Такие компьютеры получили общее название «домашний компьютер».

В настоящее время подавляющее большинство продаваемых компьютеров ввиду своей функциональности и стоимости могут эксплуатироваться как в офисах, так и в домашних условиях.

Термины «ЭВМ», «персональный компьютер» и «домашний компьютер» постепенно теряют первоначальный смысл и сливаются в более короткий и привычный термин «компьютер», который подразумевает вычислительную машину с клавиатурой, системным блоком и монитором.

Чтобы отличать ПК от других типов компьютеров, существуют уточняющие термины: ноутбук (лэптоп ), нетбук , планшетный компьютер и т. д.

См. также

Примечания

Литература

  • Скотт Мюллер. Модернизация и ремонт ПК = Upgrading and Repairing PCs. - 17-е изд. - М .: Вильямс, 2007. - 1504 с. - ISBN 0-7897-3404-4
  • Ковтанюк Юрий Славович. Библия пользователя ПК. - М .: Диалектика, 2007. - 992 с. - ISBN 978-5-8459-1196-4

Ссылки

Под термином самый первый в мире компьютер можно понимать несколько различных моделей. С одной стороны, это гигантские машины, созданные в середине XX века. С другой стороны – человечество непосредственно познакомилось с компьютерами, и даже получило возможность пользоваться ими в быту, намного позже.

И история первых персональных ЭВМ начинается уже с середины 1970 годов.

В нашем материале мы расскажем вам о создании первых прототипов современных компьютеров и здоровенных вычислительных машинах, которые ученые называют первыми компьютерами.

Первые «гиганты» вычислительных технологий

В самом начале эры компьютеров, в 1940-х годах, было создано сразу несколько независимо разработанных моделей огромных вычислительных устройств. Все были разработаны и собраны учёными из США и занимали десятки квадратных метров площади.

По современным меркам, такое оборудование трудно назвать компьютером. Однако на тот момент более мощных машин для проведения вычислений со скоростью, намного превышающей результат среднего человека, не существовало.


Рис. 1 Один из первых компьютеров, UNIVAC, заносят в помещение для монтажа.

Марк-1

Программируемое устройство «Марк-1» по праву считается первым в мире компьютером. Вычислительная машина, разработанная в 1941 году группой из 5 инженеров (включая Говарда Эйкена), была предназначена для военных целей. После окончания работ, проверки и наладки компьютера его передали ВВС США. Формальный запуск «Марк-1» в работу состоялся в августе 1944 года.

Основная часть ЭВМ, общая стоимость которой превысила 500 тысяч долларов, находилась внутри металлического корпуса и состояла из более чем 765 тыс. деталей. Длина оборудования достигала 17 метров, высота – 2,5 м, в результате чего под неё было выделено огромное помещение Гарвардского университета. Среди других параметров прибора:

  • общая масса: более 4,5 тонн;
  • длина электрокабелей внутри корпуса: до 800 км;
  • длина вала, синхронизирующего вычислительные модули: 15 м;
  • мощность электромотора, приводившего в действие компьютер: 5 кВт;
  • скорость вычисления: сложение и вычитание – 0,33 с, деление – 15,3 с, умножение – 6 с.

«Марк-1» можно было назвать огромным и мощным арифмометром – именно этой версии придерживаются те, кто считает родоначальником компьютерных технологий модель ENIAC. Однако, благодаря возможности выполнять заданные пользователем программы в автоматическом режиме (чего не могла делать, например, созданная немного раньше немецкая вычислительная машина Z3), именно «Марк-1» считают первым компьютером.

Работая с помощью перфоленты, машина не требовала вмешательства в работу человека. Хотя из-за отсутствия поддержки условных переходов каждая программа была записана на длинном и закольцованном ленточном рулоне.

После того как мощности устройства стало недостаточно для выполнения новых задач, которые ставили перед разработчиками заказчики, один из авторов компьютера, Говард Эйкен, продолжил работу над новыми моделями. Так, в 1947 году была создана вторая версия, «Марк-2», а в 1949 году – «Марк-3». Последний вариант под названием Mark IV был выпущен в 1952 году и тоже использовался американскими военными.


Рис. 2 Первый компьютер Mark-1.

ENIAC

Вычислительная машина «ЭНИАК» предназначалась для выполнения примерно тех же задач, что и «Марк-1». Однако результатом разработки стал по-настоящему многозадачный компьютер. Первый запуск устройства состоялся практически в конце 1945 года, поэтому использовать его для военных целей во Второй мировой войне было уже поздно.

И сложнейшая в то время вычислительная машина, работавшая, по мнению современников, «со скоростью мысли», участвовала в других проектах. Одним из них было моделирование взрыва водородной бомбы.

Для того чтобы повысить надёжность такого количества приборов разработчики применили метод, предназначенный для работы музыкальных электроорганов. После этого аварийность снизилась в несколько раз, и из 17 тыс. ламп за неделю перегорало не больше двух. Кроме того, была разработана система контроля безопасности оборудования, включавшая проверку каждой из 100 тыс. мелких деталей.

Параметры компьютера:

  • общее время разработки: 200 тысяч человеко-часов;
  • цена проекта: $487 тысяч;
  • масса: около 27 тонн;
  • мощность: 174 кВт;
  • память: 20 буквенно-численных комбинаций;
  • скорость работы: сложение – 5 тыс. операций в сек, умножение – 357 операций в сек.

Для ввода и вывода данных на ENIAC применялся табулятор со скоростью 125 и 100 карт в минуту, соответственно. За время проведения испытаний ЭВМ обработало больше 1 млн. перфокарт. А единственным серьёзным даже для своего времени недостатком машины, в сотни раз ускорившей процесс вычисления по сравнению с предшественником, были размеры – почти в 2 раза больше, чем у «Марк-1».


Рис. 3 Второй в мире компьютер «ЭНИАК».

EDVAC

Усовершенствованная ЭВМ EDVAC (тоже созданная Эккертом и Мосли) могла проводить расчёты уже не только на основе перфокарт, но и с помощью содержащейся в памяти программы.

Такая возможность появилась в результате применения ртутных трубок, запоминающих информацию, и двоичной системы, существенно упростившей вычислении и количество ламп. Результатом работы группы американских учёных стал компьютер с памятью около 5,5 Кбайт, состоящий из таких элементов:

  • устройства для чтения и записи информации с магнитной ленты;
  • осциллографа для контроля работы ЭВМ;
  • устройства, принимающего сигналы от управляющих элементов и передающего их вычислительным модулям;
  • таймера;
  • устройств для проведения вычислений и запоминания информации;
  • временных регистров (в современной терминологии – «буферов обмена»), хранящих по одному слову.

Компьютер, занимающий площадь в 45,5 кв. м., тратил около 0,000864 секунд на сложение и вычитание и 0,0029 с на умножение и деление. Его масса достигала всего 7,85 тонны – намного меньше по сравнению с ENIAC. Мощность прибора – всего 50 кВт, а количество диодных ламп составляло всего 3,5 тысячи штук.


Рис. 4 Компьютер «Эдвак».

Вам это может быть интересно:

Отечественные разработки

Отечественная наука в 1940 годах тоже проводила разработки для получения электронных вычислительных машин. Результатом работы лаборатории имени С. А. Лебедева стала первая на Евразийском континенте модель МЭСМ. Следом за ней появилось несколько других компьютеров, уже не таких известных, хотя и внёсших весомый вклад в научную деятельность СССР.

МЭСМ

Аббревиатура МЭСМ, компьютера, создаваемого с 1948 по 1950 год, расшифровывалась как «Малая электронная счётная машина». Такое название ЭВМ получила из-за того что сначала была всего лишь макетом «большого» устройства. Однако полученные положительные результаты испытаний привели к созданию полноценного компьютера, собранного в двухэтажном здании монастыря.

Первый запуск прошёл в ноябре 1950 года, а первая серьёзная задача решена в январе следующего года. В течение следующих 6 лет МЭСМ применяли для сложных научных вычислений, потом использовали в качестве учебного пособия, и, наконец, в 1959 году разобрали.

Рабочие параметры устройства были следующими:

  • количество ламп: 6 тыс.;
  • трёхадресная система команд с 20 двоичными разрядами;
  • память: постоянная на 31 число и 63 команды, оперативная такого же размера;
  • быстродействие: частота 5 кГц, выполнение 3 тыс. операций в сек;
  • площадь: около 60 кв. м.;
  • мощность: до 25 кВт.


Рис. 5 Советский компьютер начального уровня МЭСМ,

БЭСМ-1

Работа над ещё одним советским компьютером велась в то же время, что и над МЭСМ. Устройство называлось Большой электронной счётной машиной и работало с утроенной скоростью – до 10 тыс. операций в секунду – при уменьшении числа ламп до 730 штук.

Количество разрядов для чисел, которыми оперировала ЭВМ, составляло 39 единиц, а точность расчётов достигала 9 знаков. В результате машина могла работать с числами от 0,000000001 до 1000000000. Так же, как и МЭСМ, большое устройство было выпущено в одном экземпляре.

Машина, конструктором которой тоже был С. А. Лебедев, считалась в 1953 году самой быстрой в Европе. В то время как лучшим компьютером в мире признали американскую IBM 701. Первый коммерческий компьютер компании «Ай-Би-Эм» производил в секунду до 17 тысяч операций.


Рис. 6 Первая полноценная ЭВМ в СССР БЭСМ-1.

БЭСМ-2

Усовершенствованный вариант, БЭСМ-2, стал не только очередным самым быстрым компьютером в стране, но и одним из первых серийных советских устройств такого типа. С 1958 до 1962 года советская промышленность выпустила 67 моделей ЭВМ.

На одной из них проводился расчёт ракеты, доставившей на Луну вымпел Советского Союза. Скорость БЭСМ-2 составляла 20 тыс. операций в секунду. При этом оперативная память достигала, в пересчёте на современные единицы, около 11 Кбайт и работала на ферритовых сердечниках.


Рис. 7 Советский компьютер БЭСМ-2.

Первые модели массового производства

К началу 1970 годов компьютерные технологии развились до такой степени, что можно было позволить купить ЭВМ для личного пользования. Раньше это могли сделать только крупные организации, так как стоимость техники достигала десятков и сотен тысяч долларов в США и примерно такой же суммы в рублях для СССР.

С уменьшением размеров компьютеры становятся по-настоящему персональными. И первым среди них можно назвать прототип, не оставивший в истории большого следа, но всё равно выпущенный в количестве нескольких тысяч экземпляров – Xerox Alto. Дата выхода первой модели – 1973 год.

Среди преимуществ можно было назвать приличную память в 128 Кбайт (и расширением до 512 Кбайт) и запоминающее устройство на 2,5 Мбайт. Недостатком – огромный «системный блок» размером с современное для формата А3.

Именно габариты помешали сделать производство достаточно массовым, хотя компьютер приобретали организации из-за удобного графического интерфейса.


Рис. 8 Компьютер Xerox Alto – мощный, но дорогой.

На территории СССР в 1968 году тоже пытались создать прототип ПК. Омский инженер Горохов запатентовал вычислительное устройство, функциональность которого примерно соответствовала первым персональным машинам 1970 годов. Впрочем, ни одной реально действующей модели создано не было, не говоря уже о серийном производстве.

И первым массовым ПК (хотя и с ограниченной функциональностью) стал Altair 8800, выпускаемый с 1974 года. Его можно назвать прототипом первых современных компьютеров с – именно интеловский чипсет устанавливался на материнской плате ЭВМ.

Стоимость модели в сборе составляла чуть больше $600, в разобранном состоянии – около $400. Такая низкая стоимость привела к массовому спросу, и «Альтаир» продавался тысячами. При этом устройство представляло собой всего лишь системный блок, не имеющий ни монитора, ни клавиатуры, ни звуковой карты.

Все эти периферийные устройства были разработаны позже, а покупатели первых моделей Altair 8800 могли работать с ним только с помощью переключателей и лампочек.


Рис. 9 Модель Altair 8800 с объединённым вместе монитором и клавиатурой.

В данной статье описаны основные этапы развития компьютеров. Описаны основные направления развития компьютерных технологий и причины их этого развития.

Основные этапы развития компьютеров

В ходе эволюции компьютерных технологий были разработаны сотни разных компьютеров. Многие из них давно забыты, в то время как влияние других на современные идеи оказалось весьма значительным. В этой статье мы дадим краткий обзор некоторых ключевых исторических моментов, чтобы лучше понять, каким образом разработчики дошли до концепции современных компьютеров. Мы рассмотрим только основные моменты развития, оставив многие подробности за скобками. Компьютеры, которые мы будем рассматривать, представлены в таблице ниже.

Основные этапы истории развития компьютеров:

Год выпуска Название компьютера Создатель Примечания
1834 Аналитическая машина Бэббидж Первая попытка построить цифровой компьютер
1936 Z1 Зус Первая релейная вычислительная машина
1943 COLOSSUS Британское правительство Первый электронный компьютер
1944 Mark I Айкен Первый американский многоцелевой компьютер
1946 ENIAC I Экерт/Моушли С этой машины начинается история современных компьютеров
1949 EDSAC Уилкс Первый компьютер с программами, хранящимися в памяти
1951 Whirlwind I МТИ Первый компьютер реального времени
1952 IAS Фон Нейман Этот проект используется в большинстве современных компьютеров
1960 PDP-1 DEC Первый мини-компьютер (продано 50 экземпляров)
1961 1401 IBM Очень популярный маленький компьютер
1962 7094 IBM Очень популярная небольшая вычислительная машина
1963 В5000 Burroughs Первая машина, разработанная для языка высокого уровня
1964 360 IBM Первое семейство компьютеров
1964 6600 CDC Первый суперкомпьютер для научных расчетов
1965 PDP-8 DEC Первый мини-компьютер массового потребления (продано 50 000 экземпляров)
1970 PDP-11 DEC Эти мини-компьютеры доминировали на компьютерном рынке в 70-е годы
1974 8080 Intel Первый универсальный 8-разрядный компьютер на микросхеме
1974 CRAY-1 Cray Первый векторный суперкомпьютер
1978 VAX DEC Первый 32-разрядный суперминикомпьютер
1981 IBM PC IBM Началась эра современных персональных компьютеров
1981 Osbome-1 Osborne Первый портативный компьютер
1983 Lisa Apple Первый ПК с графическим пользовательским интерфейсом
1985 386 Intel Первый 32-разрядный предшественник линейки Pentium
1985 MIPS MIPS Первый компьютер RISC
1987 SPARC Sun Первая рабочая станция RISC на основе процессора SPARC
1990 RS6000 IBM Первый суперскалярный компьютер
1992 Alpha DEC Первый 64-разрядный ПК
1993 Newton Apple Первый карманный компьютер

Всего из истории можно выделить 6 этапов развития компьютеров: поколение механических компьютеров, компьютеры на электронных лампах (такие, как ENIAC), транзисторные компьютеры (IBM 7094), первые компьютеры на интегральных схемах (IBM 360), персональные компьютеры (линейки с ЦП Intel) и, так называемые, невидимые компьютеры.

Нулевое поколение - механические компьютеры (1642-1945)

Первым человеком, создавшим счетную машину, был французский ученый Блез Паскаль (1623-1662), в честь которого назван один из языков программирования. Паскаль сконструировал эту машину в 1642 году, когда ему было всего 19 лет, для своего отца, сборщика налогов. Это была механическая конструкция с шестеренками и ручным приводом. Счетная машина Паскаля могла выполнять только операции сложения и вычитания.

Тридцать лет спустя великий немецкий математик Готфрид Вильгельм Лейбниц (1646-1716) построил другую механическую машину, которая помимо сложения и вычитания могла выполнять операции умножения и деления. В сущности, Лейбниц три века назад создал подобие карманного калькулятора с четырьмя функциями.

Еще через 150 лет профессор математики Кембриджского Университета, Чарльз Бэббидж (1792-1871), изобретатель спидометра, разработал и сконструировал разностную машину . Эта механическая машина, которая, как и машина Паскаля, могла лишь складывать и вычитать, подсчитывала таблицы чисел для морской навигации. В машину был заложен только один алгоритм - метод конечных разностей с использованием полиномов. У этой машины был довольно интересный способ вывода информации: результаты выдавливались стальным штампом на медной дощечке, что предвосхитило более поздние средства ввода-вывода - перфокарты и компакт-диски.

Хотя его устройство работало довольно неплохо, Бэббиджу вскоре наскучила машина, выполнявшая только один алгоритм. Он потратил очень много времени, большую часть своего семейного состояния и еще 17 000 фунтов, выделенных правительством, на разработку аналитической машины. У аналитической машины было 4 компонента: запоминающее устройство (память), вычислительное устройство, устройство ввода (для считывания перфокарт), устройство вывода (перфоратор и печатающее устройство). Память состояла из 1000 слов по 50 десятичных разрядов; каждое из слов содержало переменные и результаты. Вычислительное устройство принимало операнды из памяти, затем выполняло операции сложения, вычитания, умножения или деления и возвращало полученный результат обратно в память. Как и разностная машина, это устройство было механическим.

Преимущество аналитической машины заключалось в том, что она могла выполнять разные задания. Она считывала команды с перфокарт и выполняла их. Некоторые команды приказывали машине взять 2 числа из памяти, перенести их в вычислительное устройство, выполнить над ними операцию (например, сложить) и отправить результат обратно в запоминающее устройство. Другие команды проверяли число, а иногда совершали операцию перехода в зависимости от того, положительное оно или отрицательное. Если в считывающее устройство вводились перфокарты с другой программой, то машина выполняла другой набор операций. То есть в отличие от разностной аналитическая машина могла выполнять несколько алгоритмов.

Поскольку аналитическая машина программировалась на элементарном ассемблере, ей было необходимо программное обеспечение. Чтобы создать это программное обеспечение, Бэббидж нанял молодую женщину - Аду Августу Ловлейс (Ada Augusta Lovelace), дочь знаменитого британского поэта Байрона. Ада Ловлейс была первым в мире программистом. В ее честь назван современный язык программирования - Ada.

К несчастью, подобно многим современным инженерам, Бэббидж никогда не отлаживал компьютер. Ему нужны были тысячи и тысячи шестеренок, сделанных с такой точностью, которая в XIX веке была недоступна. Но идеи Бэббиджа опередили его эпоху, и даже сегодня большинство современных компьютеров по конструкции сходны с аналитической машиной. Поэтому справедливо будет сказать, что Бэббидж был дедушкой современного цифрового компьютера.

В конце 30-х годов немец Конрад Зус (Konrad Zuse) сконструировал несколько автоматических счетных машин с использованием электромагнитных реле. Ему не удалось получить денежные средства от правительства на свои разработки, потому что началась война. Зус ничего не знал о работе Бэббиджа, его машины были уничтожены во время бомбежки Берлина в 1944 году, поэтому его работа никак не повлияла на будущее развитие компьютерной техники. Однако он был одним из пионеров в этой области.

Немного позже счетные машины были сконструированы в Америке. Машина Джона Атанасова (John Atanasoff) была чрезвычайно развитой для того времени. В ней использовалась бинарная арифметика и информационные емкости, которые периодически обновлялись, чтобы избежать уничтожения данных. Современная динамическая память (ОЗУ) работает по точно такому же принципу. К несчастью, эта машина так и не стала действующей. В каком-то смысле Атанасов был похож на Бэббиджа - мечтатель, которого не устраивали технологии своего времени.

Компьютер Джорджа Стибитса (George Stibbitz) действительно работал, хотя и был примитивнее, чем машина Атанасова. Стибитс продемонстрировал свою машину на конференции в Дартмутском колледже в 1940 году. На этой конференции присутствовал Джон Моушли (John Mauchley), ничем не примечательный на тот момент профессор физики из университета Пенсильвании. Позднее он стал очень известным в области компьютерных разработок.

Пока Зус, Стибитс и Атанасов разрабатывали автоматические счетные машины, молодой Говард Айкен (Howard Aiken) в Гарварде упорно проектировал ручные счетные машины в рамках докторской диссертации. После окончания исследования Айкен осознал важность автоматических вычислений. Он пошел в библиотеку, прочитал о работе Бэббиджа и решил создать из реле такой же компьютер, который Бэббиджу не удалось создать из зубчатых колес.

Работа над первым компьютером Айкена «Mark I» была закончена в 1944 году. Компьютер имел 72 слова по 23 десятичных разряда каждое и мог выполнить любую команду за 6 секунд. В устройствах ввода-вывода использовалась перфолента. К тому времени, как Айкен закончил работу над компьютером «Mark II», релейные компьютеры уже устарели. Началась эра электроники.

Первое поколение - электронные лампы (1945-1955)

Стимулом к созданию электронного компьютера стала Вторая мировая война. В начале войны германские подводные лодки разрушали британские корабли. Германские адмиралы посылали на подводные лодки по радио команды, и хотя англичане могли перехватывать эти команды, проблема была в том, что радиограммы были закодированы с помощью прибора под названием ENIGMA , предшественник которого был спроектирован изобретателем-дилетантом и бывшим президентом США Томасом Джефферсоном.

В начале войны англичанам удалось приобрести ENIGMA у поляков, которые, в свою очередь, украли ее у немцев. Однако, чтобы расшифровать закодированное послание, требовалось огромное количество вычислений, и их нужно было произвести сразу после перехвата радиограммы. Поэтому британское правительство основало секретную лабораторию для создания электронного компьютера под названием COLOSSUS. В создании этой машины принимал участие знаменитый британский математик Алан Тьюринг. COLOSSUS работал уже в 1943 году, но, так как британское правительство полностью контролировало этот проект и рассматривало его как военную тайну на протяжении 30 лет, COLOSSUS не стал базой для дальнейшего развития компьютеров. Мы упомянули о нем только потому, что это был первый в мире электронный цифровой компьютер.

Вторая мировая война повлияла на развитие компьютерной техники и в США. Армии нужны были таблицы, которые использовались при нацеливании тяжелой артиллерии. Сотни женщин нанимались для расчетов на ручных счетных машинах и заполнения полей этих таблиц (считалось, что женщины аккуратнее в расчетах, чем мужчины). Тем не менее этот процесс требовал много времени, и часто случались ошибки.

Джон Моушли, который был знаком с работами Атанасова и Стибблитса, понимал, что армия заинтересована в счетных машинах. Он потребовал от армии финансирования работ по созданию электронного компьютера. Требование было удовлетворено в 1943 году, и Моушли со своим студентом Дж. Преспером Экертом (J. Presper Eckert) начали конструировать электронный компьютер, который они назвали ENIAC (Electronic Numerical Integrator and Computer - электронный цифровой интегратор и калькулятор). ENIAC состоял из 18 000 электровакуумных ламп и 1500 реле, весил 30 тонн и потреблял 140 киловатт электроэнергии. У машины было 20 регистров, каждый из которых мог содержать 10-разрядное десятичное число. (Десятичный регистр - это память очень маленького объема, которая может вмещать число до какого-либо определенного максимального количества разрядов, что-то вроде одометра, запоминающего километраж пройденного автомобилем пути.) В ENIAC было установлено 6000 многоканальных переключателей и имелось множество кабелей, протянутых к разъемам.

Работа над машиной была закончена в 1946 году, когда она уже была не нужной - по крайней мере, для достижения первоначально поставленных целей.

Поскольку война закончилась, Моушли и Экерту позволили организовать школу, где они рассказывали о своей работе коллегам-ученым. В этой школе и зародился интерес к созданию больших цифровых компьютеров.

После появления школы за конструирование электронных вычислительных машин взялись другие исследователи. Первым рабочим компьютером был EDSAC (1949 год). Эту машину сконструировал Морис Уилкс в Кембриджском университете. Далее - JOHNIAC в корпорации Rand, ILLIAC в Университете Иллинойса, MANIAC в лаборатории Лос-Аламоса и WEIZAC в Институте Вайцмана в Израиле.

Экерт и Моушли вскоре начали работу над машиной EDVAC (Electronic Discrete Variable Computer - электронная дискретная параметрическая машина). К несчастью, этот проект закрылся, когда они ушли из университета, чтобы основать компьютерную корпорацию в Филадельфии (Силиконовой долины тогда еще не было). После ряда слияний эта компания превратилась в Unisys Corporation.

Экерт и Моушли хотели получить патент на изобретение цифровой вычислительной машины. После нескольких лет судебной тяжбы было вынесено решение, что патент недействителен, так как цифровую вычислительную машину изобрел Атанасов, хотя он ее и не запатентовал.

В то время как Экерт и Моушли работали над машиной EDVAC, один из участников проекта ENIAC, Джон Фон Нейман, поехал в Институт специальных исследований в Принстоне, чтобы сконструировать собственную версию EDVAC под названием IAS (Immediate Address Storage - память с прямой адресацией). Фон Нейман был гением в тех же областях, что и Леонардо да Винчи. Он знал много языков, был специалистом в физике и математике, обладал феноменальной памятью: он помнил все, что когда-либо слышал, видел или читал. Он мог дословно процитировать по памяти текст книг, которые читал несколько лет назад. Когда фон Нейман стал интересоваться вычислительными машинами, он уже был самым знаменитым математиком в мире.

Фон Нейман вскоре осознал, что создание компьютеров с большим количеством переключателей и кабелей требует длительного времени и очень утомительно. Он пришел к мысли, что программа должна быть представлена в памяти компьютера в цифровой форме, вместе с данными. Он также отметил, что десятичная арифметика, используемая в машине ENIAC, где каждый разряд представлялся десятью электронными лампами A включена и 9 выключены), должна быть заменена параллельной бинарной арифметикой. Между прочим, Атанасов пришел к аналогичному выводу лишь спустя несколько лет.

Основной проект, который фон Нейман описал вначале, известен сейчас как фон-неймановская вычислительная машина . Он был использован в EDSAC, первой машине с программой в памяти, и даже сейчас, более чем полвека спустя, является основой большинства современных цифровых компьютеров. Сам замысел и машина IAS оказали очень большое влияние на дальнейшее развитие компьютерной техники, поэтому стоит кратко описать проект фон Неймана. Стоит иметь в виду, что хоть проект и связан с именем фон Неймана, в его разработке приняли деятельное участие другие ученые - в частности, Голдстайн. Архитектуру этой машины иллюстрирует следующий рисунок:

Машина фон Неймана состояла из пяти основных частей: памяти, арифметико-логического устройства, устройства управления, а также устройств ввода-вывода. Память включала 4096 слов размером по 40 бит, бит - это 0 или 1. Каждое слово содержало или 2 команды по 20 бит, или целое число со знаком на 40 бит. 8 бит указывали на тип команды, а остальные 12 бит определяли одно из 4096 слов. Арифметический блок и блок управления составляли «мозговой центр» компьютера. В современных машинах эти блоки сочетаются в одной микросхеме, называемой центральным процессором (ЦП) .

Внутри арифметико-логического устройства находился особый внутренний регистр на 40 бит, так называемый аккумулятор. Типичная команда добавляла слово из памяти в аккумулятор или сохраняла содержимое аккумулятора в памяти. Эта машина не выполняла арифметические операции с плавающей точкой, поскольку Фон Нейман считал, что любой сведущий математик способен держать плавающую точку в голове.

Примерно в то же время, когда Фон Нейман работал над машиной IAS, исследователи МТИ разрабатывали свой компьютер Whirlwind I. В отличие от IAS, ENIAC и других машин того же типа со словами большой длины, машина Whirlwind I имела слова по 16 бит и предназначалась для работы в реальном времени. Этот проект привел к изобретению Джеем Форрестером (Jay Forrester) памяти на магнитном сердечнике, а затем и первого серийного мини-компьютера.

В то время IBM была маленькой компанией, производившей перфокарты и механические машины для сортировки перфокарт. Хотя фирма IBM частично финансировала проект Айкена, она не интересовалась компьютерами и только в 1953 году построила компьютер 701, через много лет после того, как компания Экерта и Моушли со своим компьютером UNIVAC стала номером один на компьютерном рынке.

В 701 было 2048 слов по 36 бит, каждое слово содержало две команды. 701 стал первым компьютером, лидирующим на рынке в течение десяти лет. Через три года появился компьютер 704, у которого было 4 Кбайт памяти на магнитных сердечниках, команды по 36 бит и процессор с плавающей точкой. В 1958 году компания IBM начала работу над последним компьютером на электронных лампах, 709, который по сути представлял собой усложненную версию 704.

Второе поколение - транзисторы (1955-1965)

Транзистор был изобретен сотрудниками лаборатории Bell Laboratories Джоном Бардином Oohn Bardeen), Уолтером Браттейном (Walter Brattain) и Уильямом Шокли (William Shockley), за что в 1956 году они получили Нобелевскую премию в области физики. В течение десяти лет транзисторы совершили революцию в производстве компьютеров, и к концу 50-х годов компьютеры на вакуумных лампах уже безнадежно устарели. Первый компьютер на транзисторах был построен в лаборатории МТИ (Массачусетским Техническим Институтом). Он содержал слова из 16 бит, как и Whirlwind I. Компьютер назывался ТХ-0 (Transistorized experimental computer 0 - экспериментальная транзисторная вычислительная машина 0) и предназначался только для тестирования будущей машины ТХ-2.

Машина ТХ-2 не имела большого значения, но один из инженеров этой лаборатории, Кеннет Ольсен (Kenneth Olsen), в 1957 году основал компанию DEC (Digital Equipment Corporation - корпорация по производству цифровой аппаратуры), чтобы производить серийную машину, сходную с ТХ-0. Эта машина, PDP-1, появилась только через четыре года главным образом потому, что те, кто финансировал DEC, считали производство компьютеров невыгодным. Поэтому компания DEC продавала в основном небольшие электронные платы.

Компьютер PDP-1 появился только в 1961 году. Он имел 4096 слов по 18 бит и быстродействие 200 000 команд в секунду. Этот параметр был в два раза меньше, чем у 7090, транзисторного аналога 709. PDP-1 был самым быстрым компьютером в мире в то время. PDP-1 стоил 120 000 долларов, в то время как 7090 стоил миллионы. Компания DEC продала десятки компьютеров PDP-1, и так появилась компьютерная промышленность.

Одну из первых машин модели PDP-1 отдали в МТИ, где она сразу привлекла внимание некоторых молодых исследователей, подающих большие надежды. Одним из нововведений PDP-1 был дисплей размером 512 х 512 пикселов, на котором можно было рисовать точки. Вскоре студенты МТИ составили специальную программу для PDP-1, чтобы играть в «Войну миров» - первую в мире компьютерную игру.

Через несколько лет компания DEC разработала модель PDP-8, 12-разрядный компьютер. PDP-8 стоил гораздо дешевле, чем PDP-1 A6 000 долларов). Главное нововведение - единственная шина (omnibus), показанная на рис. 1.5. Шина - это набор параллельно соединенных проводов для связи компонентов компьютера. Это нововведение радикально отличало PDP-8 от IAS. Такая структура с тех пор стала использоваться во всех компьютерах. Компания DEC продала 50 000 компьютеров модели PDP-8 и стала лидером на рынке мини-компьютеров.


Как уже отмечалось, с изобретением транзисторов компания IBM построила транзисторную версию 709 - 7090, а позднее - 7094. У этой версии время цикла составляло 2 микросекунды, а память состояла из 32 536 слов по 36 бит. 7090 и 7094 были последними компьютерами типа ENIAC, но они широко использовались для научных расчетов в 60-х годах прошлого века.

Компания IBM выпускала также компьютеры 1401 для коммерческих расчетов. Эта машина могла считывать и записывать магнитные ленты и перфокарты и распечатывать результат так же быстро, как и 7094, но при этом стоила дешевле. Для научных вычислений она не подходила, но зато была очень удобна для ведения деловых записей.

У 1401 не было регистров и фиксированной длины слова. Память содержала 4000 байт по 8 бит (в более поздних моделях объем увеличился до немыслимых в то время 16 000 байт). Каждый байт содержал символ в 6 бит, административный бит и бит для указания конца слова. У команды MOVE, например, есть исходный адрес и адрес пункта назначения. Эта команда перемещает байты из первого адреса во второй, пока бит конца слова не примет значение 1.

В 1964 году компания CDC (Control Data Corporation) выпустила машину 6600, которая работала почти на порядок быстрее, чем 7094. Этот компьютер для сложных расчетов пользовался большой популярностью, и компания CDC пошла «в гору». Секрет столь высокого быстродействия заключался в том, что внутри ЦПУ (центрального процессора) находилась машина с высокой степенью параллелизма. У нее было несколько функциональных устройств для сложения, умножения и деления, и все они могли работать одновременно. Для того чтобы машина быстро работала, требовалось составить хорошую программу, а приложив некоторые усилия, можно было сделать так, чтобы машина выполняла 10 команд одновременно.

Внутри машины 6600 было встроено несколько маленьких компьютеров. Центральный процессор, таким образом, производил только подсчет чисел, а остальные функции (управление работой машины, а также ввод и вывод информации) выполняли маленькие компьютеры. Некоторые принципы работы устройства 6600 используются и в современных компьютерах.

Разработчик компьютера 6600 Сеймур Крей (Seymour Cray) был легендарной личностью, как и фон Нейман. Он посвятил всю свою жизнь созданию очень мощных компьютеров, которые сейчас называют суперкомпьютерами . Среди них можно назвать 6600, 7600 и Сгау-1. Сеймур Крей также является автором известного «алгоритма покупки автомобилей»: вы идете в магазин, ближайший к вашему дому, показываете на машину, ближайшую к двери, и говорите: «Я беру эту». Этот алгоритм позволяет тратить минимум времени на не очень важные дела (покупку автомобилей) и позволяет большую часть времени на важные (разработку суперкомпьютеров).

Следует упомянуть еще один компьютер - Burroughs B5000. Разработчики машин PDP-1, 7094 и 6600 занимались только аппаратным обеспечением, стараясь снизить его стоимость (DEC) или заставить работать быстрее (IBM и CDC). Программное обеспечение не менялось. Производители В5000 пошли другим путем. Они разработали машину с намерением программировать ее на языке Algol 60 (предшественнике языков С и Java), сконструировав аппаратное обеспечение так, чтобы упростить задачу компилятора. Так появилась идея, что при
разработке компьютера нужно также учитывать и программное обеспечение. Но вскоре эта идея была забыта.

Третье поколение - интегральные схемы (1965-1980)

Изобретение в 1958 году Робертом Нойсом (Robert Noyce) кремниевой интегральной схемы означало возможность размещения на одной небольшой микросхеме десятков транзисторов. Компьютеры на интегральных схемах были меньшего размера, работали быстрее и стоили дешевле, чем их предшественники на транзисторах.

К 1964 году компания IBM лидировала на компьютерном рынке, но существовала одна большая проблема: компьютеры 7094 и 1401, которые она выпускала, были несовместимы друг с другом. Один из них предназначался для сложных расчетов, в нем использовалась двоичная арифметика на регистрах по 36 бит, во втором применялась десятичная система счисления и слова разной длины. У многих покупателей были оба этих компьютера, и им не нравилось, что они совершенно несовместимы.

Когда пришло время заменить эти две серии компьютеров, компания IBM сделала решительный шаг. Она выпустила линейку транзисторных компьютеров System/360, которые были предназначены как для научных, так и для коммерческих расчетов. Линейка System/360 имела много нововведений. Это было целое семейство компьютеров для работы с одним языком (ассемблером). Каждая новая модель была больше по возможностям, чем предыдущая. Компания смогла заменить 1401 на 360 (модель 30), а 7094 - на 360 (модель 75). Модель 75 была больше по размеру, работала быстрее и стоила дороже, но программы, написанные для одной из них, могли использоваться в другой. На практике программы, написанные для маленькой модели, выполнялись большой моделью без особых затруднений. Но в случае переноса программного обеспечения с большой машины на маленькую могло не хватить памяти. И все же создание такой линейки компьютеров было большим достижением. Идея создания семейств компьютеров вскоре стала очень популярной, и в течение нескольких лет большинство компьютерных компаний выпустили серии сходных машин с разной стоимостью и функциями. В табл. ниже показаны некоторые параметры первых моделей из семейства 360. О других моделях этого семейства мы расскажем далее.

Первые модели серии IBM 360:

Параметры Модель 30 Модель 40 Модель 50 Модель 65
Относительная производительность 1 3,5 10 21
Время цикла (нс) 1000 625 500 250
Максимальный объем памяти (байт) 65536 262144 262144 524288
Количество байтов, вызываемых из памяти за 1 цикл 1 2 4 16
Максимальное число каналов данных 3 3 4 6

Еще одно нововведение в 360 - мультипрограммирование . В памяти компьютера могло находиться одновременно несколько программ, и пока одна программа ждала, когда закончится процесс ввода-вывода, другая выполнялась. В результате ресурсы процессора расходовались более рационально.

Компьютер 360 был первой машиной, которая могла полностью эмулировать работу других компьютеров. Маленькие модели могли эмулировать 1401, а большие - 7094, поэтому программисты могли оставлять свои старые программы без изменений и использовать их в работе с 360. Некоторые модели 360 выполняли программы, написанные для 1401, гораздо быстрее, чем сама 1401, поэтому стала бессмысленной переделка программ.

Компьютеры серии 360 могли эмулировать работу других компьютеров, потому что создавались с использованием микропрограммирования. Нужно было написать всего лишь три микропрограммы: одну - для системы команд 360, другую - для системы команд 1401, третью - для системы команд 7094. Требование гибкости стало одной из главных причин применения микропрограммирования.

Компьютеру 360 удалось разрешить дилемму между двоичной и десятичной системами счисления: у этого компьютера было 16 регистров по 32 бит для бинарной арифметики, но память состояла из байтов, как у 1401. В 360 использовались такие же команды для перемещения записей разного размера из одной части памяти в другую, как ив 1401.

Объем памяти у 360 составлял 2 24 байт (16 Мбайт). В те времена такой объем памяти казался огромным. Линейка 360 позднее сменилась линейкой 370, затем 4300, 3080, 3090. У всех этих компьютеров была сходная архитектура. К середине 80-х годов 16 Мбайт памяти стало недостаточно, и компании IBM пришлось частично отказаться от совместимости, чтобы перейти на 32-разрядную адресацию, необходимую для памяти объемом в 2 32 байт.

Можно было бы предположить, что поскольку у машин были слова в 32 бит и регистры, у них вполне могли бы быть и адреса в 32 бит. Но в то время никто не мог даже представить себе компьютер с объемом памяти в 16 Мбайт. Обвинять IBM в отсутствии предвидения все равно что обвинять современных производителей персональных компьютеров в том, что адреса в них всего по 32 бит. Возможно, через несколько лет объем памяти компьютеров будет составлять намного больше 4 Гбайт, и тогда адресов в 32 бит будет недостаточно.

Мир мини-компьютеров сделал большой шаг вперед в третьем поколении вместе с производством линейки компьютеров PDP-11, последователей PDP-8 со словами по 16 бит. Во многих отношениях компьютер PDP-11 был младшим братом 360, a PDP-1 - младшим братом 7094. И у 360, и у PDP-11 были регистры, слова, память с байтами, и в обеих линейках компьютеры имели разную стоимость и разные функции. PDP-1 широко использовался, особенно в университетах, и компания DEC продолжала лидировать среди производителей мини-компьютеров.

Четвертое поколение - сверхбольшие интегральные схемы (1980-?)

Появление сверхбольших интегральных схем (СБИС) в 80-х годах позволило помещать на одну плату сначала десятки тысяч, затем сотни тысяч и, наконец, миллионы транзисторов. Это привело к созданию компьютеров меньшего размера и более быстродействующих. До появления PDP-1 компьютеры были настолько велики и дороги, что компаниям и университетам приходилось иметь специальные отделы (вычислительные центры ). К 80-м годам цены упали так сильно, что возможность приобретать компьютеры появилась не только у организаций, но и у отдельных людей. Началась эра персональных компьютеров.

Персональные компьютеры требовались совсем для других целей, чем их предшественники. Они применялись для обработки слов, электронных таблиц, а также для выполнения приложений с высоким уровнем интерактивности (например, игр), с которыми большие компьютеры не справлялись.

Первые персональные компьютеры продавались в виде комплектов. Каждый комплект содержал печатную плату, набор интегральных схем, обычно включающий схему Intel 8080, несколько кабелей, источник питания и иногда 8-дюймовый дисковод. Сложить из этих частей компьютер покупатель должен был сам. Программное обеспечение к компьютеру не прилагалось. Покупателю приходилось писать программное обеспечение самому. Позднее появилась операционная система СР/М, написанная Гари Килдаллом (Gary Kildall) для Intel 8080. Эта действующая операционная система помещалась на дискету, она включала в себя систему управления файлами и интерпретатор для выполнения пользовательских команд, которые набирались с клавиатуры.

Еще один персональный компьютер, Apple (а позднее и Apple II), был разработан Стивом Джобсом (Steve Jobs) и Стивом Возняком (Steve Wozniak). Этот компьютер стал чрезвычайно популярным среди домашних пользователей и школ, что в мгновение ока сделало компанию Apple серьезным игроком на рынке.

Наблюдая за тем, чем занимаются другие компании, компания IBM, лидирующая тогда на компьютерном рынке, тоже решила заняться производством персональных компьютеров. Но вместо того, чтобы конструировать компьютер на основе отдельных компонентов IBM «с нуля», что заняло бы слишком много времени, компания предоставила одному из своих работников, Филипу Эстриджу (Philip Estridge), большую сумму денег, приказала ему отправиться куда-нибудь подальше от вмешивающихся во все бюрократов главного управления компании, находящегося в Армонке (шт. Нью-Йорк), и не возвращаться, пока не будет создан действующий персональный компьютер. Эстридж открыл предприятие достаточно далеко от главного управления компании (во Флориде), взял Intel 8088 в качестве центрального процессора и создал персональный компьютер из разнородных компонентов. Этот компьютер (IBM PC) появился в 1981 году и стал самым покупаемым компьютером в истории.

Однако компания IBM сделала одну вещь, о которой позже пожалела. Вместо того чтобы держать проект машины в секрете (или, по крайней мере, оградить себя патентами), как она обычно делала, компания опубликовала полные проекты, включая все электронные схемы, в книге стоимостью 49 долларов. Эта книга была опубликована для того, чтобы другие компании могли производить сменные платы для IBM PC, что повысило бы совместимость и популярность этого компьютера. К несчастью для IBM, как только проект IBM PC стал широко известен, многие компании начали делать клоны PC и часто продавали их гораздо дешевле, чем IBM (поскольку все составные части компьютера можно было легко приобрести). Так началось бурное производство персональных компьютеров.

Хотя некоторые компании (такие, как Commodore, Apple и Atari) производили персональные компьютеры с использованием своих процессоров, а не процессоров Intel, потенциал производства IBM PC был настолько велик, что другим компаниям приходилось пробиваться с трудом. Выжить удалось только некоторым из них, и то лишь потому, что они специализировались в узких областях, например, в производстве рабочих станций или суперкомпьютеров.

Первая версия IBM PC была оснащена операционной системой MS-DOS, которую выпускала тогда еще крошечная корпорация Microsoft. IBM и Microsoft совместно разработали последовавшую за MS-DOS операционную систему OS/2, характерной чертой которой был графический пользовательский интерфейс (Graphical User Interface, GUI), сходный с интерфейсом Apple Macintosh. Между тем компания Microsoft также разработала собственную операционную систему Windows, которая работала на основе MS-DOS, на случай, если OS/2 не будет иметь спроса. OS/2 действительно не пользовалась спросом, a Microsoft успешно продолжала выпускать операционную систему Windows, что послужило причиной грандиозного раздора между IBM и Microsoft. Легенда о том, как крошечная компания Intel и еще более крошечная, чем Intel, компания Microsoft умудрились свергнуть IBM, одну из самых крупных, самых богатых и самых влиятельных корпораций в мировой истории, подробно излагается в бизнес-школах всего мира.

Первоначальный успех процессора 8088 воодушевил компанию Intel на его дальнейшие усовершенствования. Особо примечательна версия 386, выпущенная в 1985 году, - это первый представитель линейки Pentium. Современные процессоры Pentium гораздо быстрее процессора 386, но с точки зрения архитектуры они просто представляют собой его более мощные версии.

В середине 80-х годов на смену CISC (Complex Instruction Set Computer - компьютер с полным набором команд) пришел компьютер RISC (Reduced Instruction Set Computer - компьютер с сокращенным набором команд). RISC-команды были проще и работали гораздо быстрее. В 90-х годах появились суперскалярные процессоры, которые могли выполнять много команд одновременно, часто не в том порядке, в котором они располагаются в программе.

Вплоть до 1992 года персональные компьютеры были 8-, 16- и 32-разрядными. Затем появилась революционная 64-разрядная модель Alpha производства DEC - самый что ни на есть настоящий RISC-компьютер, намного превзошедший по показателям производительности все прочие ПК. Впрочем, тогда коммерческий успех этой модели оказался весьма скромным - лишь через десятилетие 64-разрядиые машины приобрели популярность, да и то лишь в качестве профессиональных серверов.

Пятое поколение - невидимые компьютеры

В 1981 году правительство Японии объявило о намерениях выделить национальным компаниям 500 миллионов долларов на разработку компьютеров пятого поколения на основе технологий искусственного интеллекта, которые должны были потеснить «тугие на голову» машины четвертого поколения. Наблюдая за тем, как японские компании оперативно захватывают рыночные позиции в самых разных областях промышленности - от фотоаппаратов до стереосистем и телевизоров, - американские и европейские производители в панике бросились требовать у своих правительств аналогичных субсидий и прочей поддержки. Однако несмотря на большой шум, японский проект разработки компьютеров пятого поколения в конечном итоге показал свою несостоятельность и был аккуратно «задвинут в дальний ящик». В каком-то смысле эта ситуация оказалась близка той, с которой столкнулся Беббидж: идея настолько опередила свое время, что для ее реализации не нашлось адекватной технологической базы.

Тем не менее то, что можно назвать пятым поколением компьютеров, все же материализовалось, но в весьма неожиданном виде - компьютеры начали стремительно уменьшаться. Модель Apple Newton, появившаяся в 1993 году, наглядно доказала, что компьютер можно уместить в корпусе размером с кассетный плеер. Рукописный ввод, реализованный в Newton, казалось бы, усложнил дело, но впоследствии пользовательский интерфейс подобных машин, которые теперь называются персональными электронными секретарями (Personal Digital Assistants, PDA ), или просто карманными компьютерами , был усовершенствован и приобрел широкую популярность. Многие карманные компьютеры сегодня не менее мощны, чем обычные ПК двух-трехлетней давности.

Но даже карманные компьютеры не стали по-настоящему революционной разработкой. Значительно большее значение придается так называемым «невидимым» компьютерам - тем, что встраиваются в бытовую технику, часы, банковские карточки и огромное количество других устройств. Процессоры этого типа предусматривают широкие функциональные возможности и не менее широкий спектр вариантов применения за весьма умеренную цену. Вопрос о том, можно ли свести эти микросхемы в одно полноценное поколение (а существуют
они с 1970-х годов), остается дискуссионным. Факт в том, что они на порядок расширяют возможности бытовых и других устройств. Уже сейчас влияние невидимых компьютеров на развитие мировой промышленности очень велико, и с годами оно будет возрастать. Одной из особенностей такого рода компьютеров является то, что их аппаратное и программное обеспечение зачастую проектируется методом соразработки .

Заключение

Итак, к первому поколению причисляются компьютеры на электронных лампах (такие, как ENIAC ), ко второму - транзисторные машины (IBM 7094 ), к третьему - первые компьютеры на интегральных схемах (IBM 360 ), к четвертому - персональные компьютеры (линейки ЦП Intel ). Что же касается пятого поколения, то оно больше ассоциируется не с конкретной архитектурой, а со сменой парадигмы. Компьютеры будущего будут встраиваться во все мыслимые и немыслимые устройства и за счет этого действительно станут невидимыми. Они
прочно войдут в повседневную жизнь - будут открывать двери, включать лампы, распределять деньги и выполнять тысячи других обязанностей. Эта модель, разработанная Марком Вайзером (Mark Weiser) в поздний период его деятельности, первоначально получила название повсеместной компьютеризации , но в настоящее время не менее распространен термин «всепроникающая компьютеризация ». Это явление обещает изменить мир не менее радикально, чем промышленная революция.

По материалам книги Э. Танненбаума «Архитектура компьютера», 5 издание.