Виды процессоров и зачем они нужны. Для чего нужен процессор – что это такое и как работает Для чего нужен центральный процессор в компьютере

Практически все знают, что в компьютере главным элементом среди всех «железных» компонентов является центральный процессор. Но круг людей, которые представляют себе, как работает процессор, является весьма ограниченным. Большинство пользователей об этом и понятия не имеют. И даже когда система вдруг начинает «тормозить», многие считают, что это процессор плохо работает, и не придают значения другим факторам. Для полного понимания ситуации рассмотрим некоторые аспекты работы ЦП.

Что такое центральный процессор?

Из чего состоит процессор?

Если говорить о том, как работает процессор Intel или его конкурент AMD, нужно посмотреть, как устроены эти чипы. Первый микропроцессор (кстати, именно от Intel, модель 4040) появился еще в далеком 1971 году. Он мог выполнять только простейшие операции сложения и вычитания с обработкой всего лишь 4 бит информации, т. е. имел 4-битную архитектуру.

Современные процессоры, как и первенец, основаны на транзисторах и обладают куда большим быстродействием. Изготавливаются они методом фотолитографии из определенного числа отдельных кремниевых пластинок, составляющих единый кристалл, в который как бы впечатаны транзисторы. Схема создается на специальном ускорителе разогнанными ионами бора. Во внутренней структуре процессоров основными компонентами являются ядра, шины и функциональные частицы, называемые ревизиями.

Основные характеристики

Как и любое другое устройство, процессор характеризуется определенными параметрами, которые, отвечая на вопрос, как работает процессор, обойти стороной нельзя. Прежде всего это:

  • количество ядер;
  • число потоков;
  • размер кэша (внутренней памяти);
  • тактовая частота;
  • быстрота шины.

Пока остановимся на тактовой частоте. Не зря процессор называют сердцем компьютера. Как и сердце, он работает в режиме пульсации с определенным количеством тактов в секунду. Тактовая частота измеряется в МГц или в ГГц. Чем она выше, тем больше операций может выполнить устройство.

На какой частоте работает процессор, можно узнать из его заявленных характеристик или посмотреть информацию в Но в процессе обработки команд частота может меняться, а при разгоне (оверлокинге) увеличиваться до экстремальных пределов. Таким образом, заявленная является всего лишь усредненным показателем.

Количество ядер - показатель, определяющий число вычислительных центров процессора (не путать с потоками - количество ядер и потоков могут не совпадать). За счет такого распределения появляется возможность перенаправления операций на другие ядра, за счет чего повышается общая производительность.

Как работает процессор: обработка команд

Теперь немного о структуре исполняемых команд. Если посмотреть, как работает процессор, нужно четко представлять себе, что любая команда имеет две составляющие - операционную и операндную.

Операционная часть указывает, что должна выполнить в данный момент компьютерная система, операнда определяет то, над чем должен работать именно процессор. Кроме того, ядро процессора может содержать два вычислительных центра (контейнера, потока), которые разделяют выполнение команды на несколько этапов:

  • выработка;
  • дешифрование;
  • выполнение команды;
  • обращение к памяти самого процессора
  • сохранение результата.

Сегодня применяется раздельное кэширование в виде использования двух уровней кэш-памяти, что позволяет избежать перехвата двумя и более командами обращения к одному из блоков памяти.

Процессоры по типу обработки команд разделяют на линейные (выполнение команд в порядке очереди их записи), циклические и разветвляющиеся (выполнение инструкций после обработки условий ветвления).

Выполняемые операции

Среди основных функций, возложенных на процессор, в смысле выполняемых команд или инструкций различают три основные задачи:

  • математические действия на основе арифметико-логического устройства;
  • перемещение данных (информации) из одного типа памяти в другой;
  • принятие решения по исполнению команды, и на его основе - выбор переключения на выполнения других наборов команд.

Взаимодействие с памятью (ПЗУ и ОЗУ)

В этом процессе следует отметить такие компоненты, как шина и канал чтения и записи, которые соединены с запоминающими устройствами. ПЗУ содержит постоянный набор байт. Сначала адресная шина запрашивает у ПЗУ определенный байт, затем передает его на шину данных, после чего канал чтения меняет свое состояние и ПЗУ предоставляет запрошенный байт.

Но процессоры могут не только считывать данные из оперативной памяти, но и записывать их. В этом случае используется канал записи. Но, если разобраться, по большому счету современные компьютеры чисто теоретически могли бы и вовсе обойтись без ОЗУ, поскольку современные микроконтроллеры способны размещать нужные байты данных непосредственно в памяти самого процессорного чипа. Но вот без ПЗУ обойтись никак нельзя.

Кроме всего прочего, старт системы запускается с режима тестирования оборудования (команды BIOS), а только потом управление передается загружаемой операционной системе.

Как проверить, работает ли процессор?

Теперь посмотрим на некоторые аспекты проверки работоспособности процессора. Нужно четко понимать, что, если бы процессор не работал, компьютер бы не смог начать загрузку вообще.

Другое дело, когда требуется посмотреть на показатель использования возможностей процессора в определенный момент. Сделать это можно из стандартного «Диспетчера задач» (напротив любого процесса указано, сколько процентов загрузки процессора он дает). Для визуального определения этого параметра можно воспользоваться вкладкой производительности, где отслеживание изменений происходит в режиме реального времени. Расширенные параметры можно увидеть при помощи специальных программ, например, CPU-Z.

Кроме того, можно задействовать несколько ядер процессора, используя для этого (msconfig) и дополнительные параметры загрузки.

Возможные проблемы

Наконец, несколько слов о проблемах. Вот многие пользователи часто спрашивают, мол, почему процессор работает, а монитор не включается? К центральному процессору эта ситуация не имеет никакого отношения. Дело в том, что при включении любого компьютера сначала тестируется графический адаптер, а только потом все остальное. Возможно, проблема состоит как раз в процессоре графического чипа (все современные видеоускорители имеют собственные графически процессоры).

Но на примере функционирования человеческого организма нужно понимать, что в случае остановки сердца умирает весь организм. Так и с компьютерами. Не работает процессор - «умирает» вся компьютерная система.

Все детали важны, все детали нужны! И это действительно так, ведь изъяв из компьютера даже самую маленькую, и, на первый взгляд, незначительную деталь, вы обнаружите, что ваш незаменимый помощник не работает. Процессор, а именно о нем сегодня пойдёт разговор, маленькая деталь, являющейся мозгом ПК. Микропроцессор интересен нам, прежде всего, скоростью выполнения задач, ведь чем мощнее процессор, тем быстрее он обрабатывает и выполняет команды. В этой статье мы с вами разберемся, что такое процессор и для чего он нужен?

Что такое процессор и для чего он нужен?

CPU или центральный процессор обрабатывает программный код, проще говоря, процессор выполняет все операции по обработке данных и руководит работой периферийных . Характеристики CPU это быстродействие, тактовая частота и разрядность процессора. Именно эти данные влияют на цену (но не стоит забывать и о бренде). Быстродействие отвечает за количество операций процессора в секунду. Тактовая частота измеряется в МГц (мегагерцах). Промежуток времени между двумя импульсами — такт, соответственно, чем выше модель CPU, тем меньше тактов требуется для выполнения задач. В процессорах они бывают от 60 МГц до 3 ГГц, то есть 3 ГГц — это мечта любого пользователя. Максимальное количество информации, которая обрабатывается и передаётся микропроцессором одновременно — это разрядность процессора .

Самые первые CPU были одноядерными, это значит, что запустив на ПК несколько задач, например, просмотр фильма, копирование музыки и дефрагментацию диска, вы думаете, что микропроцессор выполняет эти действия одновременно. На самом деле, все действия выполняются поочерёдно, затрачивая на каждую операцию миллисекунды. Но, на двух-ядерном процессоре эти задачи будут решаться одновременно, а вот четырёх- и восьми-ядерный сможет решать, соответственно 4 и 8 задач одновременно. Но не стоит думать, что чем больше ядер, тем мощнее CPU и быстрее ваш компьютер, поскольку мы уже выяснили, что мощность микропроцессора зависит от тактовой частоты и разрядности. Также процессоры делятся по фирме производителю. Уже не одно десятилетие идут кровавые битвы между поклонниками AMD и Intel, однако ни первым, ни вторым так и не удалось доказать несомненное преимущество своего бренда. О недостатках и достоинствах извечных конкурентов, мы поговорим позже, а сейчас попробуем выяснить какой процессор лучше для ваших потребностей.

Если вы решили самостоятельно собрать ПК или провести апгрейд нынешнего, несомненно, стоит подумать о том какой процессор лучше? Какой CPU больше подойдёт для игр, обработки видео, трудоёмких вычислений? Если вам требуется ПК для работы иили учёбы, то вполне достаточно одноядерного микропроцессора, но с высокой частотой. Однако, не стоит думать, что приобретя четырех-ядерный процессор, ваш компьютер перестанет зависать при играх или обработке видео. Ведь именно двух-ядерные процессоры обеспечивают лучшую производительность, поскольку работают на более высокой тактовой частоте, чем четырех-ядерные модели CPU.

Чтобы не ошибиться и купить действительно хороший микропроцессор, подходящий для ваших нужд, следует учитывать такие параметры как высокую тактовую частоту, количество ядер процессора, ведь чем больше ядер, тем больше вероятность, что такой процессор потянет самую последнюю игрушку или программу для работы с 3D-моделями. Следует учитывать и частоту системной шины (то есть быстродействие вашего ПК напрямую зависит от частоты шины. Например, частота 1333 МГц гораздо лучше, чем 800 или 1066 МГц). И размер системного КЭШа, ведь именно кэш микропроцессора временно хранит данные и программный код, он работает на частоте CPU и, соответственно, чем больше быстродействующая память (кэш), тем производительнее сам процессор. Ещё один немаловажный факт при выборе микропроцессора — это (охлаждающее устройство),

поскольку приобретя самую последнюю модель CPU и не позаботившись о должном охлаждении, вы рискуете не получить ожидаемого удовольствия от игр. И в самом деле, какое удовольствие, если ваш ПК будет постоянно отключаться из-за перегрева микропроцессора?

Вот мы и определились, какой процессор купить . Для заядлых геймеров больше подойдёт игровая линейка процессоров AMD,

поскольку они имеют лучшую совместимость с видеокартами ATI, чем Intel,

и, при этом, стоят гораздо дешевле. Но если для вас более важна многозадачность, тогда ваш выбор — Intel. Ввиду того что CPU от Intel работают быстрее и эффективнее, а также имеют более высокую частоту чем AMD, многие пользователи отдают предпочтение именно Intel. Но как всегда встаёт цена вопроса. Не секрет, что процессоры Intel, на 40% дороже аналогичных CPU от AMD.

Ну а теперь, я хотел бы вкратце рассказать о целом семействе процессоров Intel. Технические характеристики процессоров Intel core i3, i5, i7 я тоже опишу лишь чуть-чуть, подробные описания, в данном случае, никому особо не нужны.

Процессор Intel Core i3.

Core i3 — двух-ядерный процессор последнего поколения, который предназначен для ПК начального уровня. Был представлен в 2010 году. Оснащён встроенным двухканальным контроллером DDR3-1066 либо 1333, напряжение до 1,6 В. Этот CPU имеется встроенный контроллер PCI Express 2.0 x16, и именно благодаря ему графический ускоритель подключается напрямую к процессору. Для всех моделей Core i3 базовая тактовая частота равна 133 МГц.

Процессор Intel Core i5.

Эти CPU обладают интеллектуальной производительностью, увеличивающейся при реализации ресурсоёмких приложений (игры, работа с графическими редакторами). Core i5 могут автоматически разделять мощность между процессами, в зависимости от потребностей и задач.

Core i5 — является двух или четырех-ядерным процессором последнего поколения, он предназначен для ПК среднего уровня. Разделяется на двух-ядерные Clarkdale и четырех-ядерные Lynnfield. CPU оснащён встроенным двухканальным контроллером оперативной памяти DDR3-1066/1333 с напряжением до 1,6 В. Как и Core i3, этом микропроцессор имеет встроенный контроллер PCI Express 2.0 x16. в режиме x16 подключается к чипу в моделях со встроенным графическим ядром GMA HD, а две видеокарты в режиме x8 подключаются в моделях без встроенной графики. Для решения ресурсоёмких задач во всех Core i5 была реализована технология Turbo Boost, то есть автоматического повышения тактовой частоты.

Процессор Intel Core i7.

Что касается Core i7, то они бывают — четырех-ядерные (Lynnfield и Bloomfield) и шести-ядерные (Lynnfield). Эти процессоры являются процессорами последнего поколения, предназначенные для ПК высшего класса.

Как узнать какой процессор стоит у меня на компьютере?

Довольно часто можно услышать вопрос: «А как узнать какой у меня процессор стоит на компьютере?» Чтобы выяснить это понадобится немного времени и терпения. Поскольку данные о процессоре могут понадобиться для апгрейда или установки любого программного обеспечения (ПО) или игр.

Метод № 1 довольно прост. Для начала следует одновременно нажать .

Откроется , в которое необходимо ввести команду «dxdiag» и нажать «Ок».

В открывшимся диалоговом окне службы DirectX, мы видим, что процессор Intel Core i3, с частотой 2.4 ГГц.

Метод № 2 гораздо быстрее. Чтобы выяснить волнующий вас вопрос достаточно кликнуть правой кнопкой мыши на значке «Мой компьютер» (расположенном на рабочем столе).

и выбрать последний пункт в выпадающем меню «Свойства». После этого откроется окно, в котором подробно будет описана вся комплектация вашего ПК, а также установленная операционная система.

Метод № 3 немного долгий, но не менее эффективный, чем два предыдущих. Кликнув на «Пуск» и выбрав ,

следует выбрать самый первый пункт «Система и безопасность».

Метод № 4, подойдёт вам, если у вас уже установлена такая хорошая программа «Everest». Запустив её, в открывшемся окне, выбираем вкладку «Меню». После этого следует кликнуть на ссылку «Системная плата»

и выбрать подпункт ЦП. Справа вы увидите полное описание вашего процессора.

Как видите, ничего сложного в вопросе выяснения данных о CPU вашего компьютера нет.

Сегодня мы выполнили большую работу:

  • выяснили, что такое процессор ,
  • определились, какой процессор лучше,
  • а также, какой процессор лучше для игр , видео, обработки данных и офисной работы.
  • Узнали несколько методов для идентификации CPU на вашем ПК, а также немного разобрали технические характеристики процессоров Intel и AMD.

Надеюсь, эта статья поможет вам выбрать необходимый микропроцессор для вашего компьютера.

Процессор – это одна из самых главных частей компьютера, его мозг. Он управляет его вычислительной частью, выполняет коды программ. Иначе процессор называют микропроцессором. А в переводе с английского аббревиатуры CPU значит центральное процессорное устройство.

Первый процессор подобного рода был изобретен в компании Intel. Дата появления на свет 15 ноября 1971 года. Это был первый четырехбитный процессор под названием intel 4004. Он очень сильно отличался от современных потомков мощностью, дизайном. Имел тактовую частоту не более 740 кГц, шестнадцать четырехбитных выходов и столько же входов. Он активно использовался в светофорах, анализаторах крови, а затем в зонде Пионер-10. Конечно у всех первых ЦПУ было очень слабое ядро для операций вычисления.

Что такое процессор

Процессор или CPU (как расшифровывается аббревиатура было написано ранее) обрабатывает получаемую информацию из других устройств. Он делает это как в своей собственной памяти, так и в памяти других устройств. Кроме этого устройство может самостоятельно руководить работой других элементов материнской платы, как встроенных, так и дискретных.

ЦП находится не только в материнской плате. В видеокартах есть свои собственные устройства или GPU (графические процессоры). Они отвечают за производительность видео и вывод на экран изображения. Можно сделать вывод, что там, где необходимы сложные математические вычислительные работы, где необходимо управление командами и взаимодействием между электронными деталями устройств – всегда нужен мозг, который будет собирать все воедино и создавать правила, не даст процессу течь хаотично. Этим мозгом служит центральное процессорное устройство (ЦПУ).

Мощность зависит от вложенной производителем скорости сопоставления команд, обработки данных. Скорость и многие другие параметры зависят от количества транзисторов, находящихся в устройстве, количества ядер, его разрядности. А способность исполнять определенный набор команд называется архитектурой ЦПУ.

Что такое архитектура процессора

Под архитектурой ЦПУ подразумевается совместимость устройства с определенным набором команд, способы их исполнения, структуры. По количеству и скорости выделяются RISC и CISC.

RISC в переводе означает компьютер с сокращенным набором команд. Для такой архитектуры характерно увеличение быстродействия за счет упрощения инструкций. Таким образом увеличивается тактовая частота и повышается распределение их между блоками.

Для ЦПУ с RISC архитектурой характерна фиксация длины инструкций машины (32 бита), отсутствие операций «читать-записать-изменить». В микропроцессоре с такой архитектурой нельзя найти микропрограммы внутри него. Команды исполняются как обычный машинный код.

CISC архитектура – это комплексный набор команд. Следует сказать, что все нынешние ЦП построены по данной архитектуре. А многие современные процессоры созданы на базе данной архитектуры но с RISC ядром. От RISC ее отличает нефиксированное число длины команд, все действия кодированы в одной команде, малое количество регистров.

Разновидности CPU

ЦП подразделяются на виды по производителям, по монтажу, по количеству ядер по многим другим параметрам. Все это условно и достаточно сложно. Рассмотрим основные из них.

ЦПУ по производителям делятся на Intel, AMD, VIA. ЦПУ от фирмы Интел делятся на линейки i3, i5, i7. Каждая линейка имеет от двух ядер, например i3, до четырех и более (i5, i7, i9). Каждая линейка имеет в себе несколько поколений ЦПУ. Каждое поколение модифицируется за счет добавления ядер, увеличения скорости вычислительных работ. До сих пор еще не вышли из использования более старые линейки от Интел такие, как core 2 duo и другие.

ЦПУ от AMD отличаются тем, что эта фирма выпускает гибридные устройства . А также включают в себя графический чип. Поэтому порой дискретная видеокарта не требуется. Это эффективные, рабочие лошадки. Единственный минус — это быстрое повышение температуры . Они намного горячее, чем процессоры фирмы Intel.

CPU тайваньской компании VIA не так популярны. Они не могут составить конкуренцию таким фирмам гигантам как Intel или AMD.

Устройства делятся по разрядности . Разрядность – это размер обрабатывания данных за один такт, которыми ЦПУ обменивается с ОЗУ. Их всего две – 32 разрядный и 64 разрядный. На компьютер с 32 разрядным ЦП устанавливается Windows только 32 битная. Ограничение в оперативной памяти до 4 гигабайт. 64 разрядный процессор был выпущен, как расширение первого. Поэтому на него можно установить, как 32, так и 64 битную систему. Ограничения по ОЗУ уже составляет 16 террабайт.

По количеству ядер ЦПУ делится на двухъядерные, четырех-ядерные, шести-, восьми ядерные и т.д. Чем больше ядер, тем больше потоков, а значит производительность компьютера увеличивается.

Приобретая процессор со встроенной видеокартой , пользователю не нужно будет дополнительно тратиться на дискретную. Современные процессоры со встроенной видеокартой вполне позволяют работать со многими нетребовательными программами и играть в старые игры. Для более новых игр или тяжелых программ таких, как автокад, фотошоп, которые усиленно задействуют графические вычисления, дополнительная видеокарта все-таки понадобится.

По архитектуре процессоры можно разделить на RISC и CISC (которые рассматривались ранее), а также буферный, препроцессор и процессор-клон. Буферный — используется для промежуточной обработки информации, т.е. выполняет роль буфера между центральным процессором и устройствами. Препроцессор — либо программа для предварительной обработки, либо устройство, которое выполняет те же функции, что и буферный. Клоны — это копии процессоров популярных фирм, не всегда являются полностью идентичными, часто производители их усовершенствуют и добавляют свои технологии.

Из чего состоит и принцип работы

Ниже на рисунке увидите внутреннюю схему параметров, из которых состоит процессор. Внешне он представляет из себя кремниевую пластину с миллиардами транзисторов, с помощью которых он обменивается сигналами с другими устройствами.

Главными устройствами любого ЦПУ являются ядро или несколько ядер, два или три уровня кэш-памяти, контроллер оперативно-запоминающего устройства, контроллер системных шин.

Ядро включает в себя блок выборки инструкций , предсказателя переходов, блоков декодирования, выборки данных, выполнения инструкций, управляющего блока, блок прерывания, регистров и счетчика команд.

Самыми важными являются блок работы с прерываниями. Он позволяет останавливать программы и своевременно реагировать на происходящий события. То есть этот блок отвечает за многозадачность процессора.

Кэш-память отвечает за временное хранение информации , к которой чаще всего обращается пользователь. За счет нее увеличивается скорость доставки данных в регистры ЦПУ.

Контроллер оперативно-запоминающего устройства находится в северном мосте . Он отвечает за соединение ЦП с узлами ОЗУ, графического контроллера.

Контроллер системных шин отвечает за передачу двоичных кодов .

Так как процессор выполняет практически всю работу и сильно нагружен, то соответственно должна работать система теплоотвода. Требования по теплоотводу или tdp прописаны для каждого процессора. Они показывают не максимальные значения, а минимальные при нормальных условиях работы. Если компьютер перегревается, из-за плохого охлаждения, температура поднимается. При срабатывании сигнала перегрева компьютер выключается или пропускает часть циклов работы. То есть он может подвисать, медленно работать.

Основные характеристики ЦПУ

К основным характеристикам CPU относятся:

  • Количество ядер . Они отвечают за одновременно работающие программы. Но это не значит, что чем больше ядер, тем быстрее будет работать программа. Если утилита оптимизирована под два ядра, то она будет работать на двух ядрах и не более.
  • Частота CPU руководит скоростью обмена информации процессора с системной шиной.
  • Техпроцесс . На данный момент равен 22 нанометрам. Техпроцессом является размер транзисторов. Они отвечают за производительность. Чем меньше размер, тем больше их разместиться на кристалле ЦП.
  • Тактовая частота . Это количество вычислений за единицу времени. Чем больше, тем лучше. Но не следует забывать и о других характеристиках.
  • Сокет вычислительного устройства. Необходимо, чтобы сокет совпадал с сокетом материнской платы.

С каждым годом технология все совершенствуется и совершенствуется. Поэтому данные могут изменяться из года в год.

Процессор - это главная микросхема в компьютере (естественно и одна из самых дорогих). На сегодня самыми распространенными процессорами являются ЦП (центральный процессор ) фирмы INTEL и AMD, точнее только они и остались. Какой из них лучше, этого сказать я не могу, так как они все время соревнуются, и чуть ли не каждый месяц выпускают новые модели. Одни говорят что лучше использовать Intel для работы, а AMD Athlon для игр, другие - наоборот. В интернете есть кучи тестов этих процессоров, но если я вам начну их приводить, то боюсь, что большую часть из них вам будет трудно понять, просто надо всего понемножку и постепенно, дабы глобус не опух! 😉 Одно я знаю точно - Intel стоят немного дороже. Ну и естественно, у этих процессоров разные разъемы, вот и получается что материнские платы делятся на 2 самые большие категории:

1. Для процессоров Intel.

2. Для процессоров AMD.

Запомните - процессоры этих фирм не совместимы, т.к. у них разные разъемы.

Главная часть в процессоре - это его ядро. Несколько лет назад производители ЦП уперлись в потолок, доведя мощность своих детищ до предела. Долго они думали, гадали, что ж дальше делать-то, и почесав свою умную репу, решили развивать мощность процессоров не в высоту, а вширь. Так вот и начали обзаводиться ЦП не с одним ядром, а с двумя. Это естественно дало преимущество в производительности, за счет того, что теперь они могут делать не одну задачу, а сразу две одновременно. Двухъядерные процессоры на сегодня самые распространенные, но уже часто можно встретить на прилавках магазинов процессоры на базе трех ядер. Где-то встречаются уже и «четырехъядерники». Естественно и цена на них ох какая кусачая!

Различить какой процессор двухъядерный, а какой трехъядерный - проще пареной репы!

При покупке обратите внимание (меньше двухъядерного не берите):

1. У процессоров AMD следующие наименования моделей:

· Sempron - одноядерные.

· Athlon - двухъядерные (начиная с Athlon 3800+ и выше).

· Phenom X3 - трехъядерные.

· Phenom X4 - четырехъядерные.

2. Что касается Intel:

· Celeron - одноядерные.

· Сore 2 duo - двухъядерные.

· Core 2 Extreme и Core 2 Quad - четырёхъядерные.

Трехъядерных фирма Intel вроде как не выпускала.

Основной характеристикой процессоров является их тактовая частота (измеряется в герцах, Гц), это частота показывает, сколько операций сможет обработать процессор за одну секунду. НАПРИМЕР: если система показывает, что у вашего процессора частота составляет 2Ггц, это значит - ваш процессор может обрабатывать около 2-х миллиардов операций в секунду! Фантастически, не правда ли? Но на сегодня это не большая частота, чуть ниже среднего. Если брать новые модели, то там частота весомо превышает приведенную мною выше.

В каждом современном процессоре есть кэш. КЭШ - это встроенная в самом процессоре память. В современных моделях используется 2-ва уровня КЭШа. Используется эта память для ускорения работы ЦП. В нее записываются команды, которые чаще всего использует процессор, что-то вроде оперативки, только по объему намного меньше и намного быстрее. В серверах используется процессоры с тремя уровнями КЭШ-памяти.

Ну и главной отличительной особенностью являются естественно разъемы процессора. На данный момент самые ходовые разъемы процессоров AMD является socket (разъем) AM2+, более новый - AM3 (в слот AM3 можно вставить процессоры с разъемом AM2, и AM2+, т.к. они одинаковы, но если в слот AM2+ вставить ЦП с разъемом AM3, то компьютер не определит этот процессор, придется перепрошивать BIOS, т.к. у AM3 используются более новое программное обеспечение.), а у процессоров фирмы Intel - socket 775. Отображать картинки этих разъемов я счел ненужным, т.к. это вам ничего не даст. Просто при покупке смотрите внимательно на характеристики компьютера, там обязательно будут указаны разъемы, или спросите у продовца. Так же они будут указаны на коробках процессора и материнской платы.

Основы работы персонального компьютера и его устройство.

Немаловажный вопрос от пользователей, который я откладывал на потом, что такое процессор в компьютере? Центральный процессор (CPU) – важнейшая часть аппаратного обеспечения любого компьютера, отвечающая за выполнение необходимых арифметических операций, заданных программами, координирующая работу всех, без исключения,

Безусловно, процессор – сердце каждого компьютера. Именно процессор выполняет инструкции программного обеспечения, использующегося на персональном компьютере, обрабатывает набор данных и производит сложные вычислительные операции. Главными характеристиками процессора являются: производительность, тактовая частота, энергопотребление, разрядность, архитектура и кэш.

Итак, мы с вами поняли, что такое процессор, но какие бывают виды и для чего нужен процессор в компьютере? Давайте, обо всем по порядку. Известно, что процессоры бывают одноядерные и многоядерные . Многоядерным процессором называется центральный процессор, содержащий два (и больше) вычислительных ядра, размещенных на одном небольшом процессорном кристалле или в одном общем корпусе. Обычный процессор имеет только одно ядро. Эпоха одноядерных процессоров понемногу уходит в прошлое. По своим характеристикам они, в целом, проигрывают многоядерным процессорам.

Например, тактовая частота средненького двухъядерного процессора нередко может быть намного ниже частоты неплохого одноядерного процессора, но из-за разделения задач на «обе головы», разница в результатах становится несущественной. Двухъядерный процессор Core 2 Duo с тактовой частотой 1,7ГГц легко сможет обскакать одноядерный Celeron с тактовой частотой 2,8ГГц, ведь производительность зависит не от одной лишь частоты, но и от количества ядер, кэша и других факторов.

На сегодняшний момент на мировом компьютерном рынке лидируют два крупнейших производителя процессоров - корпорация Intel (ее доля на сегодня порядка 84%) и компания AMD (около 10%). Если взглянуть на историю развития центральных процессоров, то можно увидеть довольно много интересного. Начиная с появления первых настольных компьютеров, основным способом повысить производительность было планомерное повышение тактовой частоты.

Это весьма очевидно и логично. Однако всему есть предел и частоту невозможно наращивать до бесконечности. К сожалению, с увеличением частоты начинает нелинейно возрастать тепловыделение, достигающее, в конечном итоге, критически высоких значений. Пока решить эту проблему не помогает даже применение более тонких технических процессов в создании транзисторов.

Существует ли выход из этой очень непростой ситуации? Вскоре выход был найден в применении нескольких ядер в одном кристалле. Решено было применить вариант процессора «2 в 1». Появление на рынке компьютеров с такими процессорами вызвало целый ряд споров. Нужны ли многоядерные процессоры? Чем они лучше обычных процессоров, имеющих одно ядро? Может компании-производители просто хотят получить дополнительную прибыль? Сейчас уже можно уверенно ответить: многоядерные процессоры нужны, за ними будущее. В ближайшие десятилетия невозможно представить прогресса в этой отрасли без применения многоядерных процессоров.

Многоядерные процессоры, чем же хороши? Использование таких процессоров сравнимо с применением нескольких отдельных процессоров для одного компьютера. Ядра находятся в одном кристалле, они не являются полностью независимыми (к примеру, используют общую кэш-память). При применении имеющегося программного обеспечения, созданного изначально для работы с одним ядром, такой вариант даёт ощутимый плюс. Вы сможете запустить одновременно две (и более) ресурсоёмкие задачи без малейшего дискомфорта. Однако, ускорение единственного процесса – задание для этих систем фактически непосильное. В итоге, мы получаем почти тот же одноядерный процессор с небольшим плюсом в виде возможности задействования нескольких программ одновременно.

Как же быть? Выход из этой щекотливой ситуации вполне очевиден – требуется разработка нового поколения программного обеспечения, способного задействовать одновременно несколько ядер. Необходимо как-то распараллелить процессы. В реальности это оказалось весьма непросто. Конечно, некоторые задачи, возможно, довольно легко распараллелить. Например, относительно просто можно распараллелить кодирование видео и аудио.

Здесь в основе находится набор однотипных потоков, соответственно, организовать их одновременное выполнение – задача довольно простая. Выигрыш существующих многоядерных процессоров в решении задач кодирования перед «аналогичными» одноядерными будет пропорционален количеству этих ядер: если два ядра, то вдвое быстрее, четыре ядра – в четыре раза, 6 ядер – в шесть раз. К сожалению, подавляющую часть важных задач распараллелить гораздо сложнее. В большинстве случаев необходима серьезная переработка программного кода.

Уже несколько раз от представителей довольно мощных компьютерных компаний звучали радостные высказывания об удачной разработке оригинальных многоядерных процессоров нового поколения, которые способны самостоятельно разделять один поток на группу независимых потоков, но, к глубокому сожалению, никто из них пока не продемонстрировал ни одного подобного рабочего образца.

Шаги компьютерных компаний на пути к массовому использованию многоядерных процессоров весьма очевидны и незамысловаты. Основным заданием этих компаний является совершенствование процессоров, создание новых перспективных многоядерных процессоров, ведение продуманной ценовой политики, направленной на снижение цен (или сдерживание их роста). На сегодня, в среднем сегменте двух ведущих мировых компьютерных гигантов (AMD и Intel) можно увидеть очень широкое разнообразие двухъядерных и четырехъядерных процессоров.

При желании, можно найти еще более навороченные варианты. Радует то, что немаловажный шаг на пути к пользователю начинают делать сами разработчики современного программного обеспечения. Многие последние игры уже обзавелись поддержкой двух ядер. Самым мощным из них практически жизненно важен минимум двухъядерный процессор для обеспечения и поддержания оптимальной производительности.

Окинув взглядом прилавки лучших компьютерных магазинов, проанализировав положение дел с ассортиментом, можно сказать, что общая картина вовсе не плоха. Производителям многоядерных процессоров удалось достичь весьма высокого уровня выпуска годных кристаллов. Ценовая политика ими проводится довольно разумная. По существующим ценам видно, что, например, увеличение числа ядер процессора в два раза обычно не приводит к двойному повышению цены такого процессора для покупателя. Это весьма разумно и вполне логично. К тому же, многим совершенно ясно, что при увеличении количества ядер центрального процессора вдвое производительность в среднем возрастает далеко не в столько же раз.

Все же, стоит признать, что, несмотря на всю тернистость пути к созданию еще более совершенных многоядерных процессоров, альтернативы ему в ближайшем обозримом будущем просто-напросто нет. Рядовым потребителям, желающим идти в ногу со временем, остается лишь своевременно модернизировать свой компьютер, применяя новые процессоры с увеличенным числом встроенных ядер, выводя таким способом общую производительность на более высокий уровень. Различные одноядерные процессоры еще успешно применяются в мобильных телефонах, нетбуках и другой технике.

Если вы не знаете, где он находится, читайте статью: «Где находится процессор в компьютере». Напишите в комментариях какой у вас процессор?

Любой персональный компьютер состоит из определенных комплектующих, которые совместной работой позволяют пользователю выполнять определенные действия. Однако многие не знает, зачем компьютеру нужны оперативная память, видеокарта, процессор, материнская плата, блок питания, жесткий диск, и т. д. Давайте попробуем разобраться, что это за элементы, и какова их роль в устройстве современного ПК.

Процессор

Сердцем любого компьютера является процессор, который еще можно назвать микропроцессором. Такое комплектующее представляет собой микросхему, основная задача которой ‒ обработка информации, получаемой от устройств ввода-вывода и ОЗУ. Даже для просчета двух чисел необходимо обращение к определенной команде процессора. В течение всего времени работы компьютера этот элемент производит вычислительные операции. В современных ПК процессоры используются даже в видеоадаптерах (видеокартах), что позволяет снять большую часть нагрузки с центрального процессора.

Некоторые персональные компьютеры обладают видеокартами с очень мощными Комплектующими, которые способны мгновенно производить сложные расчеты графики при запуски игр. Конечно, неопытному человеку невозможно до конца понять, зачем нужен процессор в компьютере, так как тонкостей его работы чрезвычайно много. Главное, понять суть. Она же сводится к вычислениям и обработке данных, получаемых от периферийных устройств. Иными словами, даже шевеление мышкой ‒ обрабатываемая процессором операция, результат которой пользователь видит как движение курсора по экрану.

Современные элементы обладают несколькими ядрами. Это отдельные процессоры, работающие параллельно на базе одной схемы. Подобное разделение чипа на ядра позволяет практически вдвое поднять эффективность и скорость обработки информации, что влечет за собой высокую скорость работы системы в целом. Есть четырех- и восьмиядерные процессоры. Однако количество таких элементов не всегда означает повышение эффективности работы устройства.

Так зачем нужны ядра в компьютере? В первую очередь они необходимы для повышения скорости обработки информации, во вторую ‒ для экономии потребления энергии. В ноутбуках, где используются мобильные процессоры, часто применяются четырехъядерные элементы, в которых два ядра являются высокопроизводительными, а другие два ‒ энергоэффективными. Последние начинаю работать, когда от процессора не требуется обработка большого объема данных. Однако когда количество информации и сложность задач для обработки увеличиваются, то задействуются высокопроизводительные ядра. Мощность резко повышается, и энергопотребление растет.

Зачем компьютеру нужна видеокарта?

Видеокарта ‒ это практически тот же процессор. Однако он в большей степени производит вычисления, связанные с графикой. Что это значит? В играх его работа особенно важна, так как графический процессор обрабатывает огромное количество вычислений и преобразовывает их в сигнал для монитора, чтобы пользователь на дисплее мог видеть красивые текстуры, тени, движение листьев на ветру и т. д.

Благодаря специальным алгоритмам часть вычислений может возлагаться и на центральный процессор, что может увеличить скорость обработки данных. Все это лишь приблизительно дает понять, зачем компьютеру нужны такие комплектующие.

Оперативная память

Говоря о комплектующих, уместно рассказать, зачем нужна оперативная память в компьютере. Если говорить простыми словами, то подобный элемент системы ‒ это временный контейнер для информации и данных, которые на текущий момент запущены на ПК и используются системой. Любая программа занимает определенный объем оперативной памяти (ОЗУ). Есть ли исключения? Даже открытое окно или документ Word ‒ это объекты, которые занимают оперативную память компьютера. Иными словами, на момент набора текста весь этот текст находится в оперативной памяти, и только при сохранении он попадает в физическую память жесткого диска. И там он будет храниться до тех пор, пока пользователь его не удалит.

По сути, оперативная память ‒ это временное хранилище для файлов, доступ к которым осуществляется за считанные секунды. Эти файлы, хранящиеся в оперативной памяти, регулярно запрашиваются и обрабатываются центральным процессором и процессором видеокарты.

Довольно часто оперативную память пытаются подменить памятью жесткого диска. Для этого есть даже специальный инструмент в операционной системе. Однако стоит понимать, что винчестер работает медленно. Поэтому использовать его в качестве другого элемента не получается. Суть оперативной памяти сводится к высокой скорости доступа к файлам, в ней хранящихся.

Звуковая карта

Также некоторые пользователи пытаются понять, зачем нужна звуковая карта в компьютере. Исходя из названия, несложно догадаться, для чего нужен подобный элемент. Он представляет собой слот расширения или интегрированный в материнскую плату чипсет для создания звука. Какие функции выполняет? Благодаря этой карте может быть воспроизведен звук в колонках или наушниках, подключенных к звуковой карте посредством разъема Jack.

Работа карты проста: она получает цифровой сигнал и преобразовывает его в аналоговый. Этот сигнал могут улавливать наушники, простые колонки или другие акустические устройства.

Зачем в компьютере нужны жесткие диски?

Жесткие диски или HDD представляют собой цифровые носители информации – хранилища для файлов. Именно на диске находится фильм, который можно воспроизвести на компьютере. Там же хранятся игры, музыка, документы и другие файлы. В отличие от оперативной памяти, файлы на жестком диске будут находиться до тех пор, пока пользователь сам их не удалит.

Материнская плата

Материнская плата – это связующее звено. Именно к ней подключаются все комплектующие компьютера. Это жесткий диск, видеокарта, процессор, оперативная память, звуковая карта. Последняя часто является встроенной (интегрированной) в материнскую плату. Именно на базе этого элемента собираются все компьютеры.

В заключение

Теперь вы приблизительно понимаете, зачем в компьютере нужны перечисленные выше комплектующие. Именно из них состоит каждый системный блок ПК. Без любого упомянутого устройства (за исключением звуковой карты) работа компьютера невозможна в принципе.

Немаловажный вопрос от пользователей, который я откладывал на потом, что такое процессор в компьютере? Центральный процессор (CPU) – важнейшая часть аппаратного обеспечения любого компьютера, отвечающая за выполнение необходимых арифметических операций, заданных программами, координирующая работу всех, без исключения, .

Безусловно, процессор – сердце каждого компьютера. Именно процессор выполняет инструкции программного обеспечения, использующегося на персональном компьютере, обрабатывает набор данных и производит сложные вычислительные операции. Главными характеристиками процессора являются: производительность, тактовая частота, энергопотребление, архитектура и кэш.

Итак, мы с вами поняли, что такое процессор, но какие бывают виды и для чего нужен процессор в компьютере? Давайте, обо всем по порядку. Известно, что процессоры бывают одноядерные и многоядерные . Многоядерным процессором называется центральный процессор, содержащий два (и больше) вычислительных ядра, размещенных на одном небольшом процессорном кристалле или в одном общем корпусе. Обычный процессор имеет только одно ядро. Эпоха одноядерных процессоров понемногу уходит в прошлое. По своим характеристикам они, в целом, проигрывают многоядерным процессорам.

Например, тактовая частота средненького двухъядерного процессора нередко может быть намного ниже частоты неплохого одноядерного процессора, но из-за разделения задач на «обе головы», разница в результатах становится несущественной. Двухъядерный процессор Core 2 Duo с тактовой частотой 1,7ГГц легко сможет обскакать одноядерный Celeron с тактовой частотой 2,8ГГц, ведь производительность зависит не от одной лишь частоты, но и от количества ядер, кэша и других факторов.

На сегодняшний момент на мировом компьютерном рынке лидируют два крупнейших производителя процессоров — корпорация Intel (ее доля на сегодня порядка 84%) и компания AMD (около 10%). Если взглянуть на историю развития центральных процессоров, то можно увидеть довольно много интересного. Начиная с появления первых настольных компьютеров, основным способом повысить производительность было планомерное повышение тактовой частоты.

Это весьма очевидно и логично. Однако всему есть предел и частоту невозможно наращивать до бесконечности. К сожалению, с увеличением частоты начинает нелинейно возрастать тепловыделение, достигающее, в конечном итоге, критически высоких значений. Пока решить эту проблему не помогает даже применение более тонких технических процессов в создании транзисторов.

Существует ли выход из этой очень непростой ситуации? Вскоре выход был найден в применении нескольких ядер в одном кристалле. Решено было применить вариант процессора «2 в 1». Появление на рынке компьютеров с такими процессорами вызвало целый ряд споров. Нужны ли многоядерные процессоры? Чем они лучше обычных процессоров, имеющих одно ядро? Может компании-производители просто хотят получить дополнительную прибыль? Сейчас уже можно уверенно ответить: многоядерные процессоры нужны, за ними будущее. В ближайшие десятилетия невозможно представить прогресса в этой отрасли без применения многоядерных процессоров.

Многоядерные процессоры, чем же хороши? Использование таких процессоров сравнимо с применением нескольких отдельных процессоров для одного компьютера. Ядра находятся в одном кристалле, они не являются полностью независимыми (к примеру, используют общую кэш-память). При применении имеющегося программного обеспечения, созданного изначально для работы с одним ядром, такой вариант даёт ощутимый плюс. Вы сможете запустить одновременно две (и более) ресурсоёмкие задачи без малейшего дискомфорта. Однако, ускорение единственного процесса – задание для этих систем фактически непосильное. В итоге, мы получаем почти тот же одноядерный процессор с небольшим плюсом в виде возможности задействования нескольких программ одновременно.

Как же быть? Выход из этой щекотливой ситуации вполне очевиден – требуется разработка нового поколения программного обеспечения, способного задействовать одновременно несколько ядер. Необходимо как-то распараллелить процессы. В реальности это оказалось весьма непросто. Конечно, некоторые задачи, возможно, довольно легко распараллелить. Например, относительно просто можно распараллелить кодирование видео и аудио.

Здесь в основе находится набор однотипных потоков, соответственно, организовать их одновременное выполнение – задача довольно простая. Выигрыш существующих многоядерных процессоров в решении задач кодирования перед «аналогичными» одноядерными будет пропорционален количеству этих ядер: если два ядра, то вдвое быстрее, четыре ядра – в четыре раза, 6 ядер – в шесть раз. К сожалению, подавляющую часть важных задач распараллелить гораздо сложнее. В большинстве случаев необходима серьезная переработка программного кода.

Уже несколько раз от представителей довольно мощных компьютерных компаний звучали радостные высказывания об удачной разработке оригинальных многоядерных процессоров нового поколения, которые способны самостоятельно разделять один поток на группу независимых потоков, но, к глубокому сожалению, никто из них пока не продемонстрировал ни одного подобного рабочего образца.

Шаги компьютерных компаний на пути к массовому использованию многоядерных процессоров весьма очевидны и незамысловаты. Основным заданием этих компаний является совершенствование процессоров, создание новых перспективных многоядерных процессоров, ведение продуманной ценовой политики, направленной на снижение цен (или сдерживание их роста). На сегодня, в среднем сегменте двух ведущих мировых компьютерных гигантов (AMD и Intel) можно увидеть очень широкое разнообразие двухъядерных и четырехъядерных процессоров.

При желании, можно найти еще более навороченные варианты. Радует то, что немаловажный шаг на пути к пользователю начинают делать сами разработчики современного программного обеспечения. Многие последние игры уже обзавелись поддержкой двух ядер. Самым мощным из них практически жизненно важен минимум двухъядерный процессор для обеспечения и поддержания оптимальной производительности.

Окинув взглядом прилавки лучших компьютерных магазинов, проанализировав положение дел с ассортиментом, можно сказать, что общая картина вовсе не плоха. Производителям многоядерных процессоров удалось достичь весьма высокого уровня выпуска годных кристаллов. Ценовая политика ими проводится довольно разумная. По существующим ценам видно, что, например, увеличение числа ядер процессора в два раза обычно не приводит к двойному повышению цены такого процессора для покупателя. Это весьма разумно и вполне логично. К тому же, многим совершенно ясно, что при увеличении количества ядер центрального процессора вдвое производительность в среднем возрастает далеко не в столько же раз.

Все же, стоит признать, что, несмотря на всю тернистость пути к созданию еще более совершенных многоядерных процессоров, альтернативы ему в ближайшем обозримом будущем просто-напросто нет. Рядовым потребителям, желающим идти в ногу со временем, остается лишь своевременно модернизировать свой компьютер, применяя новые процессоры с увеличенным числом встроенных ядер, выводя таким способом общую производительность на более высокий уровень. Различные одноядерные процессоры еще успешно применяются в мобильных телефонах, нетбуках и другой технике.

Если вы не знаете, где он находится, читайте статью: « ». Напишите в комментариях какой у вас процессор?