Разложение многочленов на множители. Вынесение общего множителя за скобки. Вынесение общего множителя за скобки Вынесение степени за скобки

>>Математика: Вынесение общего множителя за скобки

Прежде чем начинать изучение этого параграфа, вернитесь к § 15. Там мы уже рассмотрели пример, в котором требовалось представить многочлен в виде произведения многочлена и одночлена. Мы установили, что эта задача не всегда корректна. Если все же такое произведение удалось составить, то обычно говорят, вынесение что многочлен разложен на множители с помощью общего вынесения общего множителя за скобки. Рассмотрим несколько примеров.

Пример 1. Разложить на множители многочлен:

А) 2х + 6у, в) 4а 3 + 6а 2 ; д) 5а 4 - 10а 3 + 15а 8 .
б) а 3 + а 2 ; г) 12аЬ 4 - 18а 2 b 3 с;

Р е ш е н и е.
а) 2х + 6у = 2 (x + Зу). За скобки вынесли общий делитель коэффициентов членов многочлена.

б) а 3 + а 2 = а 2 (а + 1). Если одна и та же переменная входит во все члены многочлена, то ее можно вынести за скобки в степени, равной наименьшей из имеющихся (т. е. выбирают наименьший из имеющихся показателей).

в) Здесь используем тот же прием, что и при решении примеров а) и б): для коэффициентов находим общий делитель (в данном случае число 2), для переменных - наименьшую степень из имеющихся (в данном случае а 2). Получаем:

4а 3 + 6а 2 = 2а 2 2а + 2а 2 3 = 2а 2 (2а + 3).

г) Обычно для целочисленных коэффициентов стараются найти не просто общий делитель, а наибольший общий делитель. Для коэффициентов 12 и 18 им будет число 6. Замечаем, что переменная а входит в оба члена многочлена, при этом наименьший показапоказатель равен 1. Переменная b также входит в оба члена многочлена, причем наименьший показатель равен 3. Наконец, переменная с входит только во второй член многочлена и не входит в первый член, значит, эту переменную нельзя вынести за скобки ни в какой степени. В итоге имеем:

12аb 4 - 18а 2 Ь 3 с = 6аЬ 3 2b - 6аЬ 3 Зас = 6аb 3 (2b - Зас).

д) 5а 4 -10а 3 +15а 8 = 5а 3 (а-2 + За 2).

Фактически в этом примере мы выработали следующий алгоритм.

Замечание . В ряде случаев полезно выносить за скобку в качестве общего множителя и дробный коэффициент.

Например:

Пример 2. Разложить на множители:

Х 4 у 3 -2х 3 у 2 + 5х 2 .

Решение. Воспользуемся сформулированным алгоритмом.

1) Наибольший общий делитель коэффициентов -1, -2 и 5 равен 1.
2) Переменная х входит во все члены многочлена с показателями соответственно 4, 3, 2; следовательно, можно вынести за скобки х 2 .
3) Переменная у входит не во все члены многочлена; значит, ее нельзя вынести за скобки.

В ы в о д: за скобки можно вынести х 2 . Правда, в данном случае целесообразнее вынести за скобки -x 2 .

Получим:
-х 4 у 3 -2х 3 у 2 + 5х 2 = - х 2 (х 2 у 3 + 2ху 2 - 5).

Пример 3 . Можно ли разделить многочлен 5а 4 - 10а 3 + 15а 5 на одночлен 5а 3 ? Если да, то выполнить деление .

Решение. В примере 1д) мы получили, что

5а 4 - 10а 3 + 15а 8 - 5а 3 (а - 2 + За 2).

Значит, заданный многочлен можно разделить на 5а 3 , при этом в частном получится а - 2 + За 2 .

Подобные примеры мы рассматривали в § 18; просмотрите их, пожалуйста, еще раз, но уже с точки зрения вынесения общего множителя за скобки.

Разложение многочлена на множители с помощью вынесения общего множителя за скобки тесно связано с двумя операциями, которые мы изучали в § 15 и 18, - с умножением многочлена на одночлен и с делением многочлена на одночлен .

А теперь несколько расширим наши представления о вынесении общего множителя за скобки. Дело в том, что иногда алгебраическое выражение задается в таком виде, что в качестве общего множителя может выступать не одночлен, а сумма нескольких одночленов.

Пример 4. Разложить на множители:

2x(x-2) + 5(x-2) 2 .

Решение. Введем новую переменную у = х - 2. Тогда получим:

2x (x - 2) + 5 (x - 2) 2 = 2ху + 5у 2 .

Замечаем, что переменную у можно вынести за скобки:

2ху + 5у 2 - у (2х + 5у). А теперь вернемся к старым обозначениям:

у(2х + 5у) = (х- 2)(2x + 5(х - 2)) = (x - 2)(2x + 5x-10) = (x-2)(7x:-10).

В подобных случаях после приобретения некоторого опыта можно не вводить новую переменную, а использовать следующую

2х(х - 2) + 5(х - 2) 2 = (х - 2)(2x + 5(x - 2))= (х - 2)(2х + 5х~ 10) = (х - 2)(7x - 10).

Календарно-тематичне планування з математики, відео з математики онлайн , Математика в школі скачати

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

В этой статье мы остановимся на вынесении за скобки общего множителя . Для начала разберемся, в чем состоит указанное преобразование выражения. Дальше приведем правило вынесения общего множителя за скобки и подробно рассмотрим примеры его применения.

Навигация по странице.

Например, слагаемые в выражении 6·x+4·y имеют общий множитель 2 , который не записан явно. Его можно увидеть лишь после того, как представить число 6 в виде произведения 2·3 , а 4 в виде произведения 2·2 . Итак, 6·x+4·y=2·3·x+2·2·y=2·(3·x+2·y) . Еще пример: в выражении x 3 +x 2 +3·x слагаемые имеют общий множитель x , который становится явно виден после замены x 3 на x·x 2 (при этом мы использовали ) и x 2 на x·x . После вынесения его за скобки получим x·(x 2 +x+3) .

Отдельно скажем про вынесение минуса за скобки. Фактически вынесение минуса за скобки означает вынесение за скобки минус единицы. Для примера вынесем за скобки минус в выражении −5−12·x+4·x·y . Исходное выражение можно переписать в виде (−1)·5+(−1)·12·x−(−1)·4·x·y , откуда отчетливо виден общий множитель −1 , который мы и выносим за скобки. В результате придем к выражению (−1)·(5+12·x−4·x·y) , в котором коэффициент −1 заменяется просто минусом перед скобками, в итоге имеем −(5+12·x−4·x·y) . Отсюда хорошо видно, что при вынесении минуса за скобки в скобках остается исходная сумма, в которой изменены знаки всех ее слагаемых на противоположные.

В заключение этой статьи заметим, что вынесение за скобки общего множителя применяется очень широко. Например, с его помощью можно более рационально вычислять значения числовых выражений . Также вынесение за скобки общего множителя позволяет представлять выражения в виде произведения, в частности, на вынесении за скобки основан один из методов разложения многочлена на множители .

Список литературы.

  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

В ходе различных математических операций при работе с уравнениями и равенствами часто появляется возможность значительно упростить все действия путем вынесения некоего общего множителя за пределы самого выражения. Это позволяет не только сократить большие группы многочлена, но и упростить сам процесс решения.

Вынесение множителя позволяет также избавиться от лишних действий и оптимизировать процесс вычислений. В данном видеоуроке мы подробно изучим возможности процедуры вынесения. Например, рассмотрим выражение следующего вида:

Нам необходимо его преобразовать так, чтобы при известных значениях всех переменных было легко вычислить значение всего полинома. Положим, а=1, с=2, х=5. Обратим внимание, что у обоих членов многочлена есть общая часть - множитель-переменная х. Она легко выносится за скобки, согласно распределительному закону умножения:

ах + сх = х(а + с)

Для нахождения правой части данного равенства необходимо поделить каждый одночлен исходного полинома на утвержденный общий множитель (в этом случае - х), частное записать алгебраической суммой в скобках, а сам множитель поставить перед ними. Руководствуясь заданными значениями переменных, получаем:

ах + сх = х(а + с) = 5(1 + 2) = 15

В видеоуроке сделан акцент, что вынесение множителя за скобки в представленном примере, сократило количество действий по расчету с трех до двух. В более сложных упражнениях эффект упрощения может быть ещё более значителен. А многие уравнения без применения метода вынесения множителя вообще очень сложно решить.

В общем, вынесение общего множителя за скобки в полиномах именуется процессом разложения многочлена на отдельные множители. При этом используется следующий алгоритм для обработки данных:

  1. Выделяется рабочая группа выражения (многочлен);
  2. Осуществляется поиск подходящего множителя, на который можно было бы поделить каждый одночлен;
  3. Производится деление мономов на выделенный множитель, при этом результаты записываются вместо одночленов, как алгебраическая сумма;
  4. Получившийся многочлен заключается в скобки, общий множитель ставится перед ними.

При выборе множителя часто возникают проблемы. Во-первых, он должен отвечать максимальному количеству мономов, в идеале - делить все одночлены. Во-вторых, в комплексных задачах необходимо подбирать такой множитель, чтобы он позволял провести решение всего упражнения дальше, облегчая всю процедуру. Как правило, если нет строгого условия извне (в уравнениях, к примеру), то множитель подбирается по принципам: подходящий всем мономам и являющийся наибольшим по степени и коэффициенту при переменной. Иначе говоря, множитель должен включать все переменные, наибольшую возможную степень, а также наибольший кратный числовой коэффициент. Рассмотрим пример:

2х 2 у - 8х 2 у + 4х 2 +4х 3 у 2

Вполне очевидно, что в этом выражении для всех одночленов наиболее приемлемым множителем будет переменная х, взятая во второй степени (максимально допустимой) и с числовым коэффициентом, равным 2, т.е. 2х 2:

2х 2 у - 8х 2 у + 4х 2 +4х 3 у 2 = 2х 2 (у - 4у + 2ху 2) = 2х 2 (2ху 2 - 3у)

Производим действия в скобках, получаем итоговый ответ, представляющий собой произведение многочлена на одночлен-множитель.

Рассмотрим ещё один пример. Необходимо преобразовать выражение вида:

2х(4-у) + х(у-4)

С первого взгляда, тут трудно что-либо вынести за скобки, кроме переменной х, вынесение которой создаст двойные скобки и лишь усложнит многочлен, поэтому данный шаг нецелесообразен. Однако следуя стандартной логике и базовым правилам математического сложения, можно уверенно записать, что:

(у-4) = -(4-у)

Если минус у правого выражения внести внутрь, то все внутренние знаки сменятся на противоположные, образуя выражение, полностью идентичное левой части. Поэтому, корректно будет записать:

2х(4-у) + х(у-4) = 2х(4-у) - х(4- у)

Теперь же оба члена многочлена содержат общий множитель (4- у), который легко вынести за скобки, продолжив дальнейшие вычисления:

2х(4-у) - х(4- у) = (4- у)(2х - х) = (4- у)х = 4х - ух

Последние два этапа расчетов не относятся к общей процедуре вынесения множителя, и являются индивидуальным решением данного примера. Сам процесс вынесения дает нам произведение двух элементарных биномов.

\(5x+xy\) можно представить как \(x(5+y)\). Это и в самом деле одинаковые выражения, мы можем в этом убедиться если раскроем скобки: \(x(5+y)=x \cdot 5+x \cdot y=5x+xy\). Как видите, в результате мы получаем исходное выражение. Значит, \(5x+xy\) действительно равно \(x(5+y)\). Кстати, это надежный способ проверки правильности вынесения общих множителей – раскрыть полученную скобку и сравнить результат с исходным выражением.


Главное правило вынесения за скобку:

К примеру, в выражении \(3ab+5bc-abc\) за скобку можно вынести только \(b\), потому что лишь оно есть во всех трех слагаемых. Процесс вынесения общих множителей за скобку представлен на схеме ниже:

Правила вынесения за скобки

    В математике принято выносить сразу все общие множители.

    Пример: \(3xy-3xz=3x(y-z)\)
    Обратите внимание, здесь мы могли бы разложить и вот так: \(3(xy-xz)\) или так: \(x(3y-3z)\). Однако это были бы неполные разложения. Выносить надо и тройку, и икс.

    Иногда общие члены сразу не видны.

    Пример: \(10x-15y=2·5·x-3·5·y=5(2x-3y)\)
    В этом случае общий член (пятерка) была скрыта. Однако разложив \(10\) как \(2\) умножить на \(5\), а \(15\) как \(3\) умножить на \(5\) – мы «вытащили пятерку на свет Божий», после чего легко смогли вынести ее за скобку.

    Если одночлен выносится полностью – от него остается единица.

    Пример : \(5xy+axy-x=x(5y+ay-1)\)
    Мы за скобку выносим \(x\), а третий одночлен и состоит только из икса. Почему же от него остается единица? Потому что если любое выражение умножить на единицу – оно не изменится. То есть этот самый \(x\) можно представить как \(1\cdot x\). Тогда имеем следующую цепочку преобразований:

    \(5xy+axy-\)\(x\) \(=5xy+axy-\)\(1 \cdot x\) \(=\)\(x\) \((5y+ay-\)\(1\) \()\)

    Более того – это единственно правильный способ вынесения, потому что если мы единицу не оставим, то при раскрытии скобок мы не вернемся к исходному выражению. Действительно, если сделать вынесение вот так \(5xy+axy-x=x(5y+ay)\), то при раскрытии мы получим \(x(5y+ay)=5xy+axy\). Третий член – пропал. Значит, такое вынесение некорректно.

    За скобку можно выносить знак «минус», при этом знаки членов с скобке меняются на противоположные.

    Пример: \(x-y=-(-x+y)=-(y-x)\)
    По сути здесь мы выносим за скобку «минус единицу», которая может быть «выделена» перед любым одночленом, даже если минуса перед ним не было. Мы здесь используем тот факт, что единицу можно записать как \((-1) \cdot (-1)\). Вот тот же пример, расписанный подробно:

    \(x-y=\)
    \(=1·x+(-1)·y=\)
    \(=(-1)·(-1)·x+(-1)·y=\)
    \(=(-1)·((-1)·x+y)=\)
    \(=-(-x+y)=\)
    \(-(y-x)\)

    Скобка тоже может быть общим множителем.

    Пример: \(3m(n-5)+2(n-5)=(n-5)(3m+2)\)
    С такой ситуацией (вынесением за скобку скобки) чаще всего мы сталкиваемся при разложении на множители методом группировки или